精英家教网 > 初中数学 > 题目详情
9.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
 

分析 (1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;
(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;
(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.

解答 解:(1)如图①,设直线AB与x轴的交点为M.
∵∠OPA=45°,
∴OM=OP=2,即M(-2,0).
设直线AB的解析式为y=kx+b(k≠0),将M(-2,0),P(0,2)两点坐标代入,得
$\left\{\begin{array}{l}{2=k×0+b}\\{0=k×(-2)+b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$.
故直线AB的解析式为y=x+2;

(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=$\frac{\sqrt{2}}{2}$QC.
设Q(m,m2),则C(m,m+2).
∴QC=m+2-m2=-(m-$\frac{1}{2}$)2+$\frac{9}{4}$,
QD=$\frac{\sqrt{2}}{2}$QC=$\frac{\sqrt{2}}{2}$[-(m-$\frac{1}{2}$)2+$\frac{9}{4}$].
故当m=$\frac{1}{2}$时,点Q到直线AB的距离最大,最大值为$\frac{9\sqrt{2}}{8}$;

(3)∵∠APT=45°,
∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.
①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.
∵Q′(-2,4),F(0,4),
∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.
(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;
(ii)当∠PAT=90°时,得到:PT=2,此时t=0.
②如图③,若∠PQB=45°,①中是情况之一,答案同上;
先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.
则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.
设Q″(n,n2)(-2<n<0),由FQ″=2,得
n2+(4-n22=22,即n4-7n2+12=0.
解得n2=3或n2=4,而-2<n<0,故n=-$\sqrt{3}$,即Q″(-$\sqrt{3}$,3).
可证△PFQ″为等边三角形,
所以∠PFQ″=60°,又PQ″=PQ″,
所以∠PBQ″=$\frac{1}{2}$∠PFQ″=30°.
则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.
(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.
则ET=$\sqrt{3}$AE=$\sqrt{3}$,OE=1,
所以OT=$\sqrt{3}$-1,
解得t=1-$\sqrt{3}$;
(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.
设TG=a,则PG=TG=a,AG=$\sqrt{3}$TG=$\sqrt{3}$a,AP=$\sqrt{2}$,
∴$\sqrt{3}$a+a=$\sqrt{2}$,
解得PT=$\sqrt{2}$a=$\sqrt{3}$-1,
∴OT=OP-PT=3-$\sqrt{3}$,
∴t=3-$\sqrt{3}$.
综上所述,所求的t的值为t=1或t=0或t=1-$\sqrt{3}$或t=3-$\sqrt{3}$.

点评 本题考查了二次函数综合题.其中涉及到了待定系数法求一次函数解析式,二次函数图象上点的坐标特征,二次函数的最值的求法以及相似三角形的判定与性质,难度比较大.另外,解答(3)题时,一定要分类讨论,做到不重不漏.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.四边形ABCD中,∠A=145°,∠D=75°.
(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;
(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.
②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是(  )
A.七年级共有320人参加了兴趣小组
B.体育兴趣小组对应扇形圆心角的度数为96°
C.各小组人数组成的数据的众数是64
D.各小组人数组成的数据的中位数是56

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.
(1)如图1,求⊙O的半径;
(2)如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,∠A=50°,∠B=45°,∠D=35°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.各边长度都是整数、最大边长为8的三角形共有20个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解下列方程组:
(1)$\left\{\begin{array}{l}{3(2x-5)-4(3y+4)=-4}\\{2(x+1)=5(y+2)}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y+z=36}\\{x-y=1}\\{2x+z-y=18}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案