精英家教网 > 初中数学 > 题目详情
20.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是(  )
A.七年级共有320人参加了兴趣小组
B.体育兴趣小组对应扇形圆心角的度数为96°
C.各小组人数组成的数据的众数是64
D.各小组人数组成的数据的中位数是56

分析 总人数=参加某项的人数÷所占比例,即可判断A;
先求出体育小组所占百分比,再乘以360度求出圆心角的度数,即可判断B;
一组数据中出现次数最多的数据叫做众数,即可判断C;
将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数(或中间两个数据的平均数)就是这组数据的中位数,即可判断D.

解答 解:A、七年级共有32÷10%=320人参加了兴趣小组,故本选项正确;
B、体育兴趣小组对应扇形圆心角的度数为360×$\frac{320-48-64-32-64-16}{320}$=108°,故本选项错误;
C、各小组人数组成的数据的众数是64,本选项正确;
D、将各小组人数组成的数据按从小到大的顺序排列为:16,32,48,64,64,96,中间两个是分别是48,64,所以中位数是(48+64)÷2=56,故本选项正确.
故选B.

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数与中位数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. 
(1)至少需要多少平方米地砖?
(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲中的正方形ABCD、图乙中的平行四边形ABCD分别各自分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.

注:图甲、图乙在答题卡上,分割线画成实线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知四边形ABCD是菱形,DE⊥AB于点E,DF⊥BC于点F,在不添加其他辅助线的情况下,请你找出图中所有的全等三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.
(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使S△PAM=$\frac{25}{2}$?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如果一个扇形的弧长为2,半径为1,则这个扇形的面积为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线l:y=-$\frac{4}{3}$x+4与y轴、x轴分别交于点A、B,若点C是x轴负半轴上一点,当AB=BC时,点P在线段AB上,点Q是x轴负半轴上一点(在点C的左侧),且AP=CQ,PQ与线段AC交于点E
(1)试判断PE与QE的数量关系,并说明理由;
(2)当点P为线段AB的中点(即P的横坐标为1.5时)直线y=-$\frac{4}{3}$x+4上是否存在一点M,△MPE的面积和△CQE的面积相等?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案