【题目】已知在△ABC中,∠C=90°,AC=3,BC=4,分别以AC、BC、AB为直径作半圆,如图所示,则阴影部分的面积是_____.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD,若AC=2,则四边形OCED的周长为( )
A.16B.8C.4D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;
(2)在(1)的条件下,求∠BEC的度数;
拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家新开发的一种摩托车如图所示,它的大灯射出的光线、与地面的夹角分别为和,大灯离地面距离.
该车大灯照亮地面的宽度约是多少(不考虑其它因素)?
一般正常人从发现危险到做出刹车动作的反应时间是,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以的速度驾驶该车,从到摩托车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家在甲、乙两家商场销售同一商品所获得的利润分别为,(单位:元),,与销售数量x(单位:件)的函数关系如图所示,试根据图象解决下列问题:
(1)分别求出,关于x的函数关系式;
(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品后,厂家可获得的总利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师给爱好学习的小军和小俊提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;请运用上述解答中所积累的经验和方法完成下题:
【结论运用】如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设y是关于x的一次函数,其图象与y轴交点的纵坐标为﹣10,且当x=1时,y=﹣5.
(1)求该一次函数图象与坐标轴围成的三角形面积;
(2)当函数值为时,自变量的取值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com