精英家教网 > 初中数学 > 题目详情
1.如图,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,-3)三点.
(1)抛物线的解析式为y=x2+2x-3;
(2)试探索抛物线上是否存在一点P,使△PAB和△CAB的面积相等?若存在,求出点P的坐标.

分析 (1)由于已知抛物线与x的两交点坐标,则可设交点式y=a(x+3)(x-1),然后把C(0,-3)代入求出a的值即可.
根据同底等高的三角形面积相等可得点P到x轴的距离等于点C到x轴的距离,再根据点P在x轴下方,把点P的纵坐标代入抛物线解析式求出点P的横坐标即可得解.

解答 解:(1)设抛物线解析式为y=a(x+3)(x-1),
把C(0,-3)代入得a•3•(-1)=-3,解得a=1,
所以抛物线解析式为y=(x+3)(x-1),即y=x2+2x-3;
故答案为y=x2+2x-3.
(2)存在点P(-2,-3)或(-1+$\sqrt{7}$,3)或(-1-$\sqrt{7}$,3)使S△PAB=S△CAB
理由如下:∵△PAB和△CAB都以AB为底边,
∴只要AB边上的高相等,则面积相等,
∵点C的坐标为(0,-3),
∴点C到AB的距离为3,
∴在x轴下方的点P,使S△PAB=S△CAB,此时点P的纵坐标为-3,
x2+2x-3=-3,
整理得,x2+2x=0,
解得x=0或x=-2,
∴点P(-2,-3);
在x轴上方的点P,使S△PAB=S△CAB,此时点P的纵坐标为3,
x2+2x-3=3,
整理得,x2+2x-6=0,
解得x=$\frac{-2±2\sqrt{7}}{2}$=-1±$\sqrt{7}$,
∴点P(-1+$\sqrt{7}$,3)或(-1-$\sqrt{7}$,3);
故存在点P(-2,-3)或(-1+$\sqrt{7}$,3)或(-1-$\sqrt{7}$,3)使S△PAB=S△CAB

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=2$\sqrt{3}$,D为线段AC上一点,△DEF是边长为a(a为小于2$\sqrt{3}$的常数)的等边三角形,且DE∥AB,将△DEF沿AC方向上下平移,设△DEF与△ABC重叠部分的周长为L.
(1)在△DEF沿AC方向上下平移过程中E到AC的距离是否发生变化?为什么?
(2)若AD=$\frac{1}{2}$,当a=2时,求L的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示L.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF∥AB,求证:AD与EF互相垂直平分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知y-3与x成正比例,且x=2时,y=7.
(1)求y与x之间的函数关系式,并指出是什么函数?
(2)当x=4时,求y的值.
(3)当y=4时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知斜边为10的直角三角形的两直角边a,b为方程x2-mx+3m+6=0的两个根.
(1)求m的值;
(2)求直角三角形的面积和斜边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求$\frac{1}{x}$+$\frac{1}{y}$$+\frac{1}{z}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如$\frac{5}{\sqrt{3}}$,$\frac{2}{\sqrt{3}+1}$这样的式子,其实我们还可以将其进一步化简:
(一)$\frac{5}{\sqrt{3}}$=$\frac{5×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{5}{3}$$\sqrt{3}$;
(二)$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1;
(三)$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}$-1.以上这种化简的方法叫分母有理化.
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$:
①参照(二)式化简$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$.
②参照(三)式化简$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$.
(2)化简:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{99}+\sqrt{97}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.当x=$\sqrt{2}$时,代数式$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$÷(1-$\frac{3}{x+1}$)的值等于-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.若把一个多项式的各项按照某个字母的指数从大到小排列,叫做这一字母的降幂排列.
已知多项式y4-x4+3x3y-$\frac{1}{2}$xy2-5x2y3
(1)按字母x的降幂排列;
(2)按字母y的降幂排列.

查看答案和解析>>

同步练习册答案