【题目】如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2.
(1)求BE长;(2)求tanC的值.
【答案】(1)BE=8;(2)tanC=4.
【解析】
(1)连接AD,由圆周角定理可知∠AEB=∠ADB=90°,由等腰三角形的性质可得BD=CD,再利用中位线求出CE的长,然后根据勾股定理求出BE的长;
(2)在直角三角形CEB中,根据正切的定义求解即可.
解:(1)连接AD,如图所示:
∵以AB为直径的⊙O与BC交于点D,
∴∠AEB=∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD是ABC的中位线,
∴OD∥AC,
∴BM=EM,
∴CE=2MD=4,
∴AE=AC﹣CE=6,
∴BE==8;
(2)在直角三角形CEB中,
∵CE=4,BE=8,
∴tanC==4.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+b交x轴于点A,交y轴于点B(0,1),与反比例函数的图象交于点C,C点的横坐标是﹣2.
(1)求反比例函数y1的解析式;
(2)设函数的图象与的图象关于y轴对称,在的图象上取一点D(D点的横坐标大于1),过D点作DE⊥x轴于点E,若四边形OBDE的面积为10,求D点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,D、E、F分别是AB、AC、BC的中点,
(1)求证:四边形DEFB是平行四边形;
(2)如果四边形DEFB是菱形,判断BE与AC的位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆慢车和一辆快车沿相同路线从A地到B地,所行驶的路程与时间的函数图象如图所示,下列说法正确的有()个
①快车追上慢车需6小时
②慢车比快车早出发2小时
③快车速度为46km/h
④慢车速度为46km/h
⑤AB两地相距828km
⑥快车14小时到达B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象经过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a<0,函数图象的顶点始终在x轴的下方
D.若a>0,则当x≥1时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y=x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;
(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,点P是线段AB的中点,且AB=12,现分别以AP,BP为边,在AB的同侧作等边△MAP和△NBP,连结MN。
(1)请只用不含刻度的直尺在图1中找到△MNP外接圆的圆心O,并保留作图痕迹;
(2)若将“点P是线段AB的中点”改成“点P是线段AB上异于端点的任意一点”,其余条件不变(如图2),请用文字写出△MNP外接圆圆心O的位置,并求出该圆半径的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com