精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABAC10,以AB为直径的⊙OBC交于点D,与AC交于点E,连ODBE于点M,且MD2

1)求BE长;(2)求tanC的值.

【答案】1BE8;(2tanC=4.

【解析】

1)连接AD,由圆周角定理可知∠AEB∠ADB90°,由等腰三角形的性质可得BDCD,再利用中位线求出CE的长,然后根据勾股定理求出BE的长;

2)在直角三角形CEB中,根据正切的定义求解即可.

解:(1)连接AD,如图所示:

AB为直径的⊙OBC交于点D

∴∠AEB∠ADB90°,即AD⊥BC

∵ABAC

∴BDCD

∵OAOB

ODABC的中位线,

∴OD∥AC

∴BMEM

∴CE2MD4

∴AEACCE6

∴BE8

2)在直角三角形CEB中,

∵CE4BE8

∴tanC4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+bx轴于点A,交y轴于点B01),与反比例函数的图象交于点CC点的横坐标是﹣2

1)求反比例函数y1的解析式;

2)设函数的图象与的图象关于y轴对称,在的图象上取一点DD点的横坐标大于1),过D点作DEx轴于点E,若四边形OBDE的面积为10,求D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,tanA2,以BC为直径的⊙O分别交ABAC于点D、点E,若DAB的中点,OD5,则AE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DEF分别是ABACBC的中点,

1)求证:四边形DEFB是平行四边形;

2)如果四边形DEFB是菱形,判断BEAC的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车和一辆快车沿相同路线从A地到B所行驶的路程与时间的函数图象如图所示下列说法正确的有()

快车追上慢车需6小时

慢车比快车早出发2小时

快车速度为46km/h

慢车速度为46km/h

AB两地相距828km

快车14小时到达B

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数(a是常数,a0),下列结论正确的是(

A.当a=1时,函数图象经过点(﹣1,1)

B.当a=﹣2时,函数图象与x轴没有交点

C.若a0,函数图象的顶点始终在x轴的下方

D.若a0,则当x1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线yx+1x轴、y轴的交点分别为AB,以x=﹣1为对称轴的抛物线y=﹣x2+bx+cx轴分别交于点AC

1)求抛物线的解析式;

2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴lx轴交于一点D,连接PD,交ABE,求出当以ADE为顶点的三角形与△AOB相似时点P的坐标;

3)若点Q在第二象限内,且tanAQD2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,点P是线段AB的中点,且AB=12,现分别以APBP为边,在AB的同侧作等边△MAP和△NBP,连结MN

(1)只用不含刻度的直尺在图1中找到△MNP外接圆的圆心O,并保留作图痕迹;

(2)若将P是线段AB的中点改成P是线段AB上异于端点的任意一点,其余条件不变(如图2),请用文字写出△MNP外接圆圆心O的位置,并求出该圆半径的最小值.

查看答案和解析>>

同步练习册答案