【题目】一辆慢车和一辆快车沿相同路线从A地到B地,所行驶的路程与时间的函数图象如图所示,下列说法正确的有()个
①快车追上慢车需6小时
②慢车比快车早出发2小时
③快车速度为46km/h
④慢车速度为46km/h
⑤AB两地相距828km
⑥快车14小时到达B地
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
①由图可直接得到快车追上慢车的时间;
②由图可直接得到慢车比快车早出发的时间;
③④从图中得到行至276km时两车所用时间,利用速度解答;
⑤求出慢车行驶的函数解析式,将x=18代入解析式,求出y的值即为求A、B两地之间的路程.
①快车从慢车出发后2小时出发,6小时时相遇,用了6﹣2=4小时追上快车,故①错误;
②由图象可知:慢车比快车早出发2小时,故②正确;
③快车速度:69km/h,故③错误;
④慢车速度:46km/h,故④正确;
⑤设慢车行驶的解析式为y=kx,将(6,276)代入解析式得:276=6k,解得:k=46,解析式为y=46x,当x=18时,y=46×18=828(km).故AB之间的距离为828km,故⑤正确.
⑥由图象可知:快车到达B地所用时间=14-2=12(小时),故⑥错误.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,0),B(0,3),将Rt△AOB绕点O逆时针旋转90°,得到Rt△COD,CD的延长线,交AB于点E,连接BC,二次函数的图象过点A、B、C.
(1)求二次函数的解析式;
(2)点P是线段BC上方抛物线上的一个动点,当∠PBC=75°时,求点P的坐标;
(3)设抛物线的对称轴与x轴交于点F,在抛物线的对称轴上,是否存在一点Q,使得以点Q、O、F为顶点的三角形,与△BDE相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,记与的函数(≠0,n≠0)的图象为图形G, 已知图形G与轴交于点,当时,函数有最小(或最大)值n, 点B的坐标为(, ),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.
(1)如图,若函数的图象记为图形G,求图形G的伴随直线的表达式;
(2)如图,若图形G的伴随直线的表达式是,且伴随四边形的面积为12,求与的函数(m>0,n <0)的表达式;
(3)如图,若图形G的伴随直线是,且伴随四边形ABCD是矩形,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O点出发,沿路线O→A→B以每秒2个单位长度的速度运动,到达B点时运动停止.
(1)则A点的坐标为_____,B两点的坐标为______;
(2)当点P在OA上,且BP平分∠OBA时,则此时点P的坐标为______;
(3)设点P的运动时间为t秒(0≤t≤4),△BPA的面积为S,求S与t之间的函数关系式:并直接写出当S=8时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:四边形ADCF为平行四边形.
(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,顶点是原点,顶点在轴上,顶点的坐标为,,,点从点出发,以的速度向点运动,点从点同时出发,以的速度向点运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设点运动的时间为.
求直线的函数解析式;
当为何值时,四边形是矩形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com