精英家教网 > 初中数学 > 题目详情

【题目】一辆慢车和一辆快车沿相同路线从A地到B所行驶的路程与时间的函数图象如图所示下列说法正确的有()

快车追上慢车需6小时

慢车比快车早出发2小时

快车速度为46km/h

慢车速度为46km/h

AB两地相距828km

快车14小时到达B

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

由图可直接得到快车追上慢车的时间

②由图可直接得到慢车比快车早出发的时间

③④从图中得到行至276km时两车所用时间利用速度解答

求出慢车行驶的函数解析式x=18代入解析式求出y的值即为求AB两地之间的路程

快车从慢车出发后2小时出发,6小时时相遇用了6﹣2=4小时追上快车故①错误

②由图象可知慢车比快车早出发2小时故②正确

③快车速度69km/h,故③错误

慢车速度46km/h,故④正确

设慢车行驶的解析式为y=kx将(6,276)代入解析式得:276=6k解得k=46,解析式为y=46xx=18y=46×18=828(km).AB之间的距离为828km故⑤正确

⑥由图象可知快车到达B地所用时间=14-2=12(小时)故⑥错误

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,0),B(0,3),将RtAOB绕点O逆时针旋转90°,得到RtCODCD的延长线,交AB于点E,连接BC,二次函数的图象过点ABC.

(1)求二次函数的解析式;

(2)点P是线段BC上方抛物线上的一个动点,当∠PBC=75°时,求点P的坐标;

(3)设抛物线的对称轴与x轴交于点F,在抛物线的对称轴上,是否存在一点Q,使得以点QOF为顶点的三角形,与BDE相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,记的函数0n0)的图象为图形G, 已知图形G轴交于点,当时,函数有最小(或最大)值n, B的坐标为(, ),点AB关于原点O的对称点分别为CD,若ABCD中任何三点都不在一直线上,且对角线ACBD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.

1)如图,若函数的图象记为图形G,求图形G的伴随直线的表达式;

2)如图,若图形G的伴随直线的表达式是,且伴随四边形的面积为12,求的函数m0n 0)的表达式;

3)如图,若图形G的伴随直线是,且伴随四边形ABCD是矩形,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】怡然美食店的AB两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

1)该店每天卖出这两种菜品共多少份?

2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与坐标轴分别交于AB两点,OA=8OB=6.动点PO点出发,沿路线O→A→B以每秒2个单位长度的速度运动,到达B点时运动停止.

(1)A点的坐标为_____B两点的坐标为______

(2)当点POA上,且BP平分∠OBA时,则此时点P的坐标为______

(3)设点P的运动时间为t(0≤t≤4),△BPA的面积为S,求St之间的函数关系式:并直接写出当S=8时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与BD重合),折痕为EF,若BC4BG3,则GE的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,DBC的中点,连接ADEAD的中点,过点ABC的平行线交BE的延长线于点F,连接CF

1)求证:四边形ADCF为平行四边形.

2)当四边形ADCF为矩形时,ABAC应满足怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,顶点是原点,顶点轴上,顶点的坐标为,,点从点出发,以的速度向点运动,点从点同时出发,以的速度向点运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设点运动的时间为.

求直线的函数解析式;

为何值时,四边形是矩形?

查看答案和解析>>

同步练习册答案