精英家教网 > 初中数学 > 题目详情
4.如图,菱形ABCD的对角线BD、AC的长分别为2,2$\sqrt{3}$,以点B为圆心的弧与AD、DC相切,则图中阴影部分的面积是2$\sqrt{3}$-π.

分析 连接AC、BD、BE,在Rt△AOB中可得∠BAO=30°,∠ABO=60°,在Rt△ABE中求出BE,得出扇形半径,由菱形面积减去扇形面积即可得出阴影部分的面积.

解答 解:连接AC、BD、BE,

∵四边形ABCD是菱形,
∴AC与BD互相垂直且平分,
∴AO=$\sqrt{3}$,BO=1,
∵tan∠BAO=$\frac{\sqrt{3}}{3}$,tan∠ABO=$\sqrt{3}$,
∴∠BAO=30°,∠ABO=60°,
∴AB=2,∠BAE=60°,
∵以B为圆心的弧与AD相切,
∴∠AEB=90°,
在Rt△ABE中,AB=2,∠BAE=60°,
∴BE=ABsin60°=$\sqrt{3}$,
∴S菱形-S扇形=$\frac{1}{2}$×2×2$\sqrt{3}$-$\frac{120π×(\sqrt{3})^{2}}{360}$=2$\sqrt{3}$-π.
故答案为:2$\sqrt{3}$-π.

点评 本题考查了扇形的面积计算、菱形的性质及切线的性质,解答本题的关键是根据菱形的性质求出各角度及扇形的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为(  )
A.90°B.125°C.135°D.145°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,一次函数y=kx+1的图象与反比例函数y=$\frac{m}{x}$(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴,y轴于点C,点D.且
OA=OB,$\frac{OC}{CA}$=$\frac{1}{2}$,则m=-4,$\frac{{S}_{△APC}}{{S}_{△DPB}}$=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.己知常数a(a是常数)满足下面两个条件:
①二次函数y1=-$\frac{1}{3}$(x+4)(x-5a-7)的图象与x轴的两个交点于坐标原点的两侧;
②一次函数y2=ax+2的图象在一、二、四象限;
(1)求整数a的值;
(2)在所给直角坐标系中分别画出y1、y2的图象,并求当y1<y2时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为18°,若楔子沿水平方向前移6cm(如箭头所示),则木桩上升了(  )
A.6tan18°cmB.$\frac{6}{tan18°}$cmC.6sin18°cmD.6cos18°cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=$-\frac{2}{3}x+2$与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点(点D不与点A重合),点E是AC的中点,连结DE并延长至点F,使EF=DE,连结AF、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当点D是AB的中点时,若AB=4,求四边形ADCF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某山山脚的M处到山顶的N处有一条长为600米的登山路,小李沿此路从M走到N,停留后再原路返回,期间小李离开M处的路程y米与离开M处的时间x分(x>0)之间的函数关系如图中折线OABCD所示.
(1)求上山时y关于x的函数解析式,并写出定义域:
(2)已知小李下山的时间共26分钟,其中前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,试求点C的纵坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.来自宁波轨道交通部门的统计数据显示,轨道2号线开通30天,轨道1号线和2号线的总客流量约663万人次,将数据663万用科学记数法表示为(  )
A.0.663×107B.663×104C.6.63×107D.6.63×106

查看答案和解析>>

同步练习册答案