精英家教网 > 初中数学 > 题目详情

【题目】在以下证明中的括号内注明理由:

已知:如图,EFCDFGHCDH.求证:∠1=3

证明:∵EFCDGHCD(已知),

EFGH   ).

∴∠1=2   ).

∵∠2=3   ),

∴∠1=3   ).

【答案】证明见解析

【解析】

如果两条直线都与第三条直线垂直,那么这两条直线平行,∠1与∠2是两平行线EFGHAB所截成的同位角,所以根据两直线平行,同位角相等可得∠1=∠2.再由图中可知,∠2与∠3是对顶角,根据对顶角相等得∠2=∠3,等量代换得∠1=∠3

证明:∵EFCDGHCD(已知),

EFGH(垂直于同一条直线的两直线平行).

∴∠1=2(两直线平行,同位角相等).

∵∠2=3(对顶角相等),

∴∠1=3(等量代换).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BOCO分别平分∠ABC和∠ACB

1)若∠A=60°,求∠BOC

2)若∠A=100°,120°,∠BOC又是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A﹣12),B﹣41),C﹣2﹣2

1)请写出△ABC关于x轴对称的点A1B1C1的坐标;

2)请在这个坐标系中作出△ABC关于y轴对称的△A2B2C2

3)计算:△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.

(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年起,昆明将迎来高铁时代,这就意味着今后昆明的市民外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从昆明到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为________千米;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣13),B20),C(﹣3,﹣1).

1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);

A1的坐标为   ;点B1的坐标为   ;点C1的坐标为   

2)若网格上的每个小正方形的边长为1,则△ABC的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程或方程组

1

2

3

4

5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:

单价(元/件)

25

28

35

40

42

销量(件)

50

44

30

20

16


(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )

A.
B.3
C.3
D.

查看答案和解析>>

同步练习册答案