精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )

A.
B.3
C.3
D.

【答案】D
【解析】连接OP、OQ.

∵PQ是⊙O的切线,

∴OQ⊥PQ;

根据勾股定理知PQ2=OP2﹣OQ2

∵当PO⊥AB时,线段PQ最短;

又∵A(﹣6,0)、B(0,6),

∴OA=OB=6,

∴AB=6

∠BOP=45°,即OP是Rt△AOB斜边上的中线,
∴OP= AB=3

∵OQ=2,

∴PQ=

所以答案是:D.

【考点精析】本题主要考查了垂线段最短和直角三角形斜边上的中线的相关知识点,需要掌握连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用;直角三角形斜边上的中线等于斜边的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在以下证明中的括号内注明理由:

已知:如图,EFCDFGHCDH.求证:∠1=3

证明:∵EFCDGHCD(已知),

EFGH   ).

∴∠1=2   ).

∵∠2=3   ),

∴∠1=3   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。

(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ ABCD中,点EF在对角线BD上,且BEDF.

(1)求证:AECF

(2)求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(1-32+(-2-(π-5)0-|-2|

2

3

4 2m3)(2m3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCDABBC)的对角线的交点O旋转(),图中的MN分别为直角三角形的直角边与矩形ABCD的边CDBC的交点.

1)该学习小组成员意外的发现图(三角板一直角边与OD重合)中,BN2CD2+CN2,在图中(三角板一边与OC重合),CN2BN2+CD2,请你对这名成员在图和图中发现的结论选择其一说明理由.

2)试探究图BNCNCMDM这四条线段之间的数量关系,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点OEF∥ABBCF,交ACE,过点OOD⊥BCD,下列四个结论:

①∠AOB=90°+CAE+BF=EF③当∠C=90°时,EF分别是ACBC的中点;④若OD=aCE+CF=2b,则SCEF=ab其中正确的是(  )

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC ∠BAC=90°,AB=AC,DBC上一动点连接AD,过点AAEAD,并且始终保持AE=AD,连接CE.

(1)求证△ABD △ACE

(2)若AF平分∠DAEBCF,探究线段BD,DF,FC之间的数量关系并证明

(3)在(2)的条件下BD=3,CF=4,AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图,在△ABC 中,∠BAC=90°,AB=AC,直线 m 经过点 A,BD⊥m 于点 D,CE⊥m 于点 E,求证:△ABD≌△CAE.

应用:如图,在△ABC 中,AB=AC,D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.

查看答案和解析>>

同步练习册答案