精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于点和点,与轴交于点,点坐标为,点坐标为,点是抛物线的顶点,过点轴的垂线,垂足为,连接

1)求抛物线的解析式及点的坐标;

2)点是抛物线上的动点,当时,求点的坐标;

3)若点轴上方抛物线上的动点,以为边作正方形,随着点的运动,正方形的大小、位置也随着改变,当顶点恰好落在轴上时,请直接写出点的横坐标.

【答案】1;(2点的坐标为;(3)点的横坐标为02

【解析】

1)将点BC坐标代入可求得解析式,将二次函数转化为顶点式,得出顶点;

2)过轴于点,设出点F的坐标,利用可得结果;

3)分2种情况讨论,一种是点Gy轴上,另一种是Hy轴上,利用矩正方形夹角为90°和邻边相等的性质可求得.

1)把点坐标为,点坐标为代入抛物线得:

解得:

2)如图,在线段上选取点,使得,过轴于点

此时

中,

解得

,则

当点轴上方时,有

解得(舍去),

此时点的坐标为

当点轴下方时,有

解得(舍去),

此时点的坐标为

综上可知点的坐标为

3)情况一:点Gy轴上

设点P(m)

∴点P(m)

∵点B(40)

∴根据BP两点可得PB的解析式为:

∵四边形PHGB是矩形,∴BGPB

∴直线BG的解析式中,k=

将点B代入BG的解析式,可求得BG的解析式为:

∵点Gy轴上,令x=0,解得:y=

G(0)

∵四边形PHGB是矩形,∴PB=BG

根据点BP的坐标得:

根据点BG的坐标得:

,即

∴化简得:

a.(m-4)(m+2)=8

解得:m=1+(),或m=1-()

b.(m-4)(m+2)=-8

解得:m=0,或m=2

情况二:点Hy轴上

同上:P(m),点B(40),根据BP两点可得PB的解析式为:

∵四边形PHGB是矩形,∴PHPB

PH解析式的k=

将点P代入PH的解析式,可求得PH的解析式为:

H(0)

根据点PH的坐标得:

同理,,即:

化简得:

a.

解得:m=2+(),或m=22

b.

解得:m=2,或m=-2()

综上得:点的横坐标为02

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,AB是直径,AP是过点A的切线,点C上,点DAP上,且,延长DCAB于点E

1)求证:

2)若的半径为5,求的长.(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边内一点,,以点B为旋转中心,将线段BO逆时针旋转得到线段,连接,则下列结论:

可以由绕点B逆时针旋转得到

②连接,则

其中正确的结论是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假旅游旺季即将到来,外出旅游的人数不断攀升,去海边游玩是大多数人不错的选择,去海边游玩的人都会选择自己购买海产品进行加工,某商家71日进购了一批扇贝与爬爬虾共计200千克,已知扇贝进价10/千克,售价30/千克,爬爬虾进价20/千克,售价30/千克.

1)若这批海产品全部售完获利不低于3000元,则扇贝至少进购多少千克?

2)第一批扇贝和爬爬虾很快售完,于是商家决定购进第二批扇贝与爬爬虾,两种海产品的进价不变,扇贝售价比第一批上涨,爬爬虾售价比第一批上涨,销量与(1)中获得最低利润时的销量相比,扇贝的销量下降了,爬爬虾的销量不变,结果第二批已经卖掉的扇贝与爬爬虾的销售总额比(1)中第一批扇贝与爬爬虾售完后对应的最低销售总额增加了,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接2022年冬奥会,鼓励更多的大学生参与到志愿服务中,甲、乙两所学校组织了志愿服务团队选拔活动,经过初选,两所学校各有300名学生进入综合素质展示环节,为了了解这些学生的整体情况,从两校进入综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.

a.甲学校学生成绩的频数分布直方图如图(数据分成6组:).

b.甲学校学生成绩在这一组是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:

平均数

中位数

众数

优秀率

83.3

84

78

46%

根据以上信息,回答下列问题:

1)甲学校学生,乙学校学生的综合素质展示成绩同为82分,这两人在本校学生中综合素质展示排名更靠前的是________(填“”或“”);

2)根据上述信息,推断________学校综合素质展示的水平更高,理由为:__________________________

(至少从两个不同的角度说明推断的合理性).

3)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,预估甲学校分数至少达到________分的学生才可以入选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtAOB的斜边OAx轴的正半轴上,∠OBA=90°,且tanAOB=OB=,反比例函数的图象经过点B

1)求反比例函数的表达式;

2)若AMBAOB关于直线AB对称,一次函数y=mx+n的图象过点MA,求一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.

涵涵的作业

解:x2﹣7x+10=0

a=1 b=﹣7 c=10

b2﹣4ac=9>0

x==

x1=5,x2=2

所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.

当腰为2,底为5时,等腰三角形的三条边为2,2,5.

探究应用:请解答以下问题:

已知等腰三角形ABC的两边是关于x的方程x2﹣mx+=0的两个实数根.

(1)当m=2时,求ABC的周长;

(2)当ABC为等边三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.

1)求BC的坐标;

2)当轴时,求抛物线的函数表达式;

3)①求动点所成的图像的函数表达式;

②连接,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为配合一带一路国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程一项地基基础加固处理工程由2、8两个工程公司承担建设,己知2工程公司单独建设完成此项工程需要180工程公司单独施工天后,工程公司参与合作,两工程公司又共同施工天后完成了此项工程.

(1)求工程公司单独建设完成此项工程需要多少天?

(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,工程公司建设其中一部分用了天完成,工程公司建设另一部分用了天完成,其中均为正整数,且,求两个工程公司各施工建设了多少天?

查看答案和解析>>

同步练习册答案