【题目】如图,正比例函数y=kx(x≥0)与反比例函数 (x>0)的图象交于点A(2,3)。
(1)求正比例函数与反比例函数的解析式;
(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.
【答案】(1)正比例函数解析式为,反比例函数解析式为;(2)x>2.
【解析】
(1)将正比例函数与反比例函数图象的交点A的坐标代入正比例函数解析式中确定出k的值,代入反比例函数解析式中求出m的值,即可求出它们的解析式;
(2)由两函数的交点A的横坐标为2,根据函数图象可得出当x大于2时,正比例函数图象在反比例函数图象上,即为正比例函数值大于反比例函数值时自变量x的取值范围.
(1)把(2,3)代入y=kx得:3=2k,k=,所以正比例函数解析式为.
同理,将(2,3)代入,得:m=6.所以反比例函数解析式为
(2)由图象可知,当正比例函数值大于反比例函数值时,
自变量x的取值范围是x>2.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC=,∠ABC=120°,△CDE为等边三角形,CD=2,连接AD,M为AD中点
(1)如图1,当B、C、E三点共线时,证明: BM⊥ME
(2)如图2,当A、C、E三点共线时,求BM的长
(3)如图3,取BE中点N,连MN.将△CDE绕点C旋转,直接写出旋转过程中线段MN的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.
(1)若FD=2, ,求线段DC的长;
(2)求证:EF·GB=BF·GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线为常数)交轴于两点.
(1)求抛物线的解析式;
(2)直接写出:①抛物线的顶点坐标;
②抛物线与轴交点关于该抛物线对称轴对称的点的坐标;
(3)在直线下方的抛物线上是否存在点使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.
(1)求证:四边形BDCE是菱形;
(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,,,,点从点出发,以每秒的速度沿折线方向运动,点从点出发,以每秒的速度沿线段方向向点运动、已知动点,同时出发,当点运动到点时,点,停止运动,设运动时间为秒,在这个运动过程中,若的面积为,则满足条件的的值有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com