精英家教网 > 初中数学 > 题目详情

【题目】如图,从热气球C上测得两建筑物AB底部的俯角分别为30°60度.如果这时气球的高度CD90米.且点ADB在同一直线上,求建筑物AB间的距离.

【答案】

【解析】

试题在Rt△ACD中,利用三边关系即可得到AD的长,在Rt△BCD中,根据正切函数求出邻边BD后,相加求和即可.

试题解析:由已知,得∠ECA=30°∠FCB=60°CD=90EF∥ABCD⊥AB于点D∴∠A=∠ECA=30°∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°∠A=30°∴AD=CD=,在Rt△BCD中,∠CDB=90°tanB=∴DB===∴AB=AD+BD=+=

答:建筑物AB间的距离为米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,外一点,过点的两条切线,切点分别为.若,则点叫做的切角点.

(1)如图②,的半径是1,点O到直线的距离为2.若点的切角点,且点在直线上,请用尺规作出点;(保留作图痕迹,不写作法)

(2)如图③,在中,的内切圆.若点的切角点,且点的边上,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)当y1﹣y2=4时,求m的值;

(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,PBC边上一动点(不与BC重合),DEAPE

(1)试说明△ADE∽△PAB

(2)若PAxDEy,请写出yx之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学问题:如何计算平面直角坐标系中任意两点之间的距离?

探究问题:

为解决上面的问题,我们从最简单的问题进行研究.

探究一:在图1中,已知线段ABA(﹣20),B03),写出线段AO的长,BO的长,所以线段AB的长为多少;把RtAOB向右平移3个单位,再向上平移2个单位,得到RtCDE,写出RtCDE的顶点坐标CDE,此时线段CD的长为多少,DE的长为多少,所以线段CE的长为多少.

探究二:在图2中,已知线段AB的端点坐标为Aab),Bcd),求出图中AB的长(用含abcd的代数式表示,不必证明).

归纳总结:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为Ax1y1),Bx2y2)时线段AB的长为多少(用含x1y1x2y2的代数式表示,不必证明).

拓展与应用:

运用在图3中,一次函数y=﹣x+3与反比例函数y=的图象交点为AB,交点的坐标分别是A12),B21).

①求线段AB的长;

②若点Px轴上动点,求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个各位数字都不为0的三位正整数N,现从它的百位、十位、个位上的数字中任意选择两个数字组成两位数若所有这些两位数的和等于这个三位数本身,则称这个三位数为本原数”例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31;选择百位数字1和个位数字2所组成的两位数为:12和21;选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“本原数”

(1)判断123是不是“本原数”?请说明理由;

(2)一个三位正整数,若它的十位数字等于百位数字与个位数学的和,则称这样的三位数为“和中数”.若一个各位数字都不为0的“和中数”是“本原数”,求z与x的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.

请补全图形并解决下面的问题:

(1)求证:∠BAE=2∠EBD;

(2)如果AB=5,sin∠EBD=.求BD的长.

查看答案和解析>>

同步练习册答案