【题目】抛物线交轴于点,,交轴的负半轴于,顶点为.下列结论:①;②;③当时,;④当是等腰直角三角形时,则;⑤若,是一元二次方程的两个根,且,则.其中错误的有( )个.
A.5B.4C.3D.2
【答案】B
【解析】
根据二次函数图象与系数的关系,可知,故,①正确;将A、B两点代入可得c、b的关系,可判定②;函数开口向上,时取得最小值,则,可判断,故③不正确;根据图象,顶点坐标,判断;根据题意,二次函数化为交点式是,令y=4,结合图像可知,,可以判断⑤.
①:根据二次函数图象与系数的关系,可知, ,故①正确;
二次函数与x轴交于点、.即得二次函数的对称轴为,即,
,.
又.
,.
,.
.
故错误;
抛物线开口向上,对称轴是.
时,二次函数有最小值.
时,.
即.
故不正确;
,,若是等腰直角三角形.
.
解得,.
设点D坐标为.
则.
解得.
点D在x轴下方.
点D为.
二次函数的顶点D为,过点.
设二次函数解析式为.
.
解得.
故不正确;
⑤:根据题意,二次函数化为交点式是,令y=4,结合图像可知,,也即一元二次方程的两个根,故⑤不正确.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图所示,线段AC是⊙O的直径,过A点作直线BF交⊙O于A、B两点,过A点作∠FAC的角平分线交⊙O于D,过D作AF的垂线交AF于E.
(1)证明DE是⊙O的切线;
(2)证明AD2=2AEOA;
(3)若⊙O的直径为10,DE+AE=4,求AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB
外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,轴交于点,抛物线经过,两点,与轴的另一交点为.
(1)求抛物线的解析式;
(2)为抛物线上一点,直线与轴交于点,当时,求点的坐标;
(3)在直线下方的抛物线上是否存在点,使得,如果存在这样的点,请求出点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.请判断沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(精确到0.01)(参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.
(1)求养鸡场的长与宽各为多少米?
(2)若10≤a<18,题中的解的情况如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=3,AB=4,则四边形AEDF的周长为( )
A.8B.9C.10D.11
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com