精英家教网 > 初中数学 > 题目详情

【题目】定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.
如图,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1

(1)证明:AB2=AA1AC;
(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)
(3)应用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此规律操作下去,用含a,n的代数式表示An﹣1An . (n为大于1的整数,直接回答,不必说明理由)

【答案】
(1)

证明:∵AC=BC,∠C=36°,

∴∠A=∠ABC=72°,

∵BA1平分∠ABC,

∴∠ABA1=∠ABC=36°,

∴∠C=∠ABA1

又∵∠A=∠A,

∴△ABC∽△AA1B,

=,即AB2=AA1AC;


(2)

解:△ABC是黄金等腰三角形,

理由:由(1)知,AB2=ACAA1

设AC=1,

∴AB2=AA1

又由(1)可得:AB=A1B,

∵∠A1BC=∠C=36°,

∴A1B=A1C,

∴AB=A1C,

∴AA1=AC﹣A1C=AC﹣AB=1﹣AB,

∴AB2=1﹣AB,

设AB=x,即x2=1﹣x,

∴x2+x﹣1=0,

解得:x1=,x2=(不合题意舍去),

∴AB=

又∵AC=1,

=

∴△ABC是黄金等腰三角形;


(3)

解:由(2)得;当AC=a,则AA1=AC﹣A1C=AC﹣AB=a﹣AB=a﹣a=a,

同理可得:A1A2=A1C﹣A1B1=AC﹣AA1﹣A1B1

=a﹣a﹣A1C

=a﹣a﹣[a﹣a]

=a.

故An1An=a.


【解析】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.

(1)若∠B=60°,这时点P与点C重合,则∠NMP=
(2)求证:NM=NP
(3)当△NPC为等腰三角形时,求∠B的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB=18米,于点A,MA=6米,射线于点B,P点从B点出发向A运动,每秒走1米,Q点从B点向D点运动,每秒走2米,P,Q同时从B出发,则出发x秒后,在线段MA上有一点C,使CAPPBQ全等,则x的值为(

A. 4 B. 6 C. 49 D. 69

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尺规作图特有的魅力曾使无数人沉湎其中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分.例如可将圆6等分,如图只需在⊙O上任取点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F.从而点A,B,C,D,E,F把⊙O六等分.下列可以只用圆规等分的是( ) ①两等分 ②三等分 ③四等分 ④五等分.

A.②
B.①②
C.①②③
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法和直角三角形全等的判定方法后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情况进行研究.

初步思考我们不妨将问题用符号语言表示为:在ABCDEF中,AC=DF,BC=EF,,然后,对进行分类,可分为是直角,钝角,锐角三种情况进行探索.

深入探究)(1)当是直角时,如图①,在ABCDEF中,AC=DF,BC=EF,,根据 可以知道.

(2)当是钝角时,如图②,在ABCDEF中,AC=DF,BC=EF,,且都是钝角,求证:.

(3)当是锐角时,在ABCDEF中,AC=DF,BC=EF,,且都是锐角,请你用尺规在图③中作出DEF,使DEFABC不全等(不写做法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则HD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,GF分别为ADBC的中点,将纸片折叠,使D点落在GF上,得到△HAE , 再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AFEF , 已知HEHF.下列结论:①△MEH为等边三角形;②AEEF;③△PHE∽△HAE;④

其中正确的结论是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

同步练习册答案