【题目】已知抛物线与轴交于点。
(1)抛物线的顶点坐标为_____________,点坐标为____________;(用含的代数式表示);
(2)当时,抛物线上有一动点,设点横坐标为,且。
①若点到轴的距离为2时,求点的坐标;
②设抛物线在点与点之间部分(含点和点)最高点与最低点纵坐标之差为,求与之间的函数关系式,并写出自变量的取值范围;
(3)若点,连结,当抛物线与线段只有一个交点时,直接写出的取值范围。
【答案】(1)顶点,点;(2)①或;②;(3)或.
【解析】
(1)把抛物线配方成顶点式即得抛物线的顶点坐标;求当x=0时对应的y值即可得出点C坐标;
(2)①先把m=1代入即得抛物线的解析式,进而可表示出点P的坐标,然后根据点到轴的距离为2可得关于n的方程,解方程即可求得结果;
②先求得点P、C和顶点D的坐标,再结合图象:如图1、2、3,分情况讨论写出即可;
(3)根据题意,先求出抛物线与直线y=2的两个交点,然后结合图象即可得出m须满足的不等式组,解不等式组即可求出结果.
解:(1),当x=0时,,
∴顶点,点;
(2)①当时,,∴,
令,解得,∴,
令,解得,(舍),∴,
综上:点P坐标是或;
②,顶点D的坐标,
当时,如图1,;
当时,如图2,;
当时,如图3,;
综上,与之间的函数关系式是:;
(3)∵,∴AB∥x轴,
当y=2时,,解得:,即抛物线与直线y=2的两个交点为与,
因为抛物线与线段只有一个交点,如图4、图5,
所以m须满足:或,
解得:或.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知反比例函数(常数,).
(1)若点在这个函数的图象上,求的值;
(2)若在这个函数图象的每一个分支上,随的增大而增大,求的取值范围;
(3)若,试判断点是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.
(3)在(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求s与t之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数(x>0)的图像经过点D,则值为( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,完成(1)~(3)题.
数学课上,老师出示了这样一道题:
如图1,△ABC中,AC=BC=a,∠ACB=90°,点D在AB上,且AD=kAB(其中0<k<),直线CD绕点D顺时针旋转90°与直线CB绕点B逆时针旋转90°后相交于点E,探究线段DC、DE的数量关系,并证明.
同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现DC与DE相等”;
小伟:“通过构造全等三角形,经过进一步推理,可以得到DC与DE相等”
小强:“通过进一步的推理计算,可以得到BE与BC的数量关系”
老师:“保留原题条件,连接CE交AB于点O.如果给出BO与DO的数量关系,那么可以求出COEO的值”
(1)在图1中将图补充完整,并证明DC=DE;
(2)直接写出线段BE与BC的数量关系 (用含k的代数式表示);
(3)在图2中将图补充完整,若BO=DO,求COEO的值(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
(2)求总利润w关于x的函数解析式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
饮料 | 果汁饮料 | 碳酸饮料 |
进价(元/箱) | 40 | 25 |
售价(元/箱) | 52 | 32 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com