精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线轴交于点

1)抛物线的顶点坐标为_____________,点坐标为____________;(用含的代数式表示);

2)当时,抛物线上有一动点,设点横坐标为,且

①若点轴的距离为2时,求点的坐标;

②设抛物线在点与点之间部分(含点和点)最高点与最低点纵坐标之差为,求之间的函数关系式,并写出自变量的取值范围;

3)若点,连结,当抛物线与线段只有一个交点时,直接写出的取值范围。

【答案】1)顶点,点;(2;(3.

【解析】

1)把抛物线配方成顶点式即得抛物线的顶点坐标;求当x=0时对应的y值即可得出点C坐标;

2)①先把m=1代入即得抛物线的解析式,进而可表示出点P的坐标,然后根据点轴的距离为2可得关于n的方程,解方程即可求得结果;

先求得点PC和顶点D的坐标,再结合图象:如图123,分情况讨论写出即可;

3)根据题意,先求出抛物线与直线y=2的两个交点,然后结合图象即可得出m须满足的不等式组,解不等式组即可求出结果.

解:(1,当x=0时,

∴顶点,点

2)①当时,,∴

,解得,∴

,解得(舍),∴

综上:点P坐标是

,顶点D的坐标

时,如图1,

时,如图2

时,如图3

综上,之间的函数关系式是:

3)∵ABx轴,

y=2时,,解得:,即抛物线与直线y=2的两个交点为

因为抛物线与线段只有一个交点,如图4、图5

所以m须满足:

解得:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=4,EAB上且AB=4BE,连接CE,作BFCEF,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知反比例函数常数,.

1若点在这个函数的图象上,求的值;

2若在这个函数图象的每一个分支上,的增大而增大,求的取值范围;

3,试判断点是否在这个函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.

(1)求抛物线对应的函数关系式;

(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

(3)(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点MMN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求st之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A30),B06)分别在x轴,y轴上,反比例函数(x0)的图像经过点D,则值为( )

A. 14 B. 14 C. 7 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,完成(1)~(3)题.

数学课上,老师出示了这样一道题:

如图1,△ABC中,ACBCa,∠ACB90°,点DAB上,且ADkAB(其中0k),直线CD绕点D顺时针旋转90°与直线CB绕点B逆时针旋转90°后相交于点E,探究线段DCDE的数量关系,并证明.

同学们经过思考后,交流了自己的想法:

小明:“通过观察和度量,发现DCDE相等”;

小伟:“通过构造全等三角形,经过进一步推理,可以得到DCDE相等”

小强:“通过进一步的推理计算,可以得到BEBC的数量关系”

老师:“保留原题条件,连接CEAB于点O.如果给出BODO的数量关系,那么可以求出COEO的值”

1)在图1中将图补充完整,并证明DCDE

2)直接写出线段BEBC的数量关系   (用含k的代数式表示);

3)在图2中将图补充完整,若BODO,求COEO的值(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。

1)设商场购进碳酸饮料y箱,直接写出yx的函数解析式;

2)求总利润w关于x的函数解析式;

3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。

饮料

果汁饮料

碳酸饮料

进价(元/箱)

40

25

售价(元/箱)

52

32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,经过圆心的线段于点,与交于点.

(1)如图1,半径为,,求弦的长;

(2)如图2,半径为 ,,,求弦的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有(  )

A.1B.2 C.3 D.4

查看答案和解析>>

同步练习册答案