精英家教网 > 初中数学 > 题目详情

【题目】自主学习,请阅读下列解题过程.
解一元二次不等式:x2﹣5x>0.
解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:

(1)上述解题过程中,渗透了下列数学思想中的 . (只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式x2﹣5x<0的解集为
(3)用类似的方法写出一元二次不等式的解集:x2﹣2x﹣3>0.

【答案】
(1)①;③
(2)0<x<5
(3)x<﹣1或x>3
【解析】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;
所以答案是:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,
此时y<0,即x2﹣5x<0,
∴一元二次不等式x2﹣5x<0的解集为:0<x<5;
所以答案是:0<x<5.(3)设x2﹣2x﹣3=0,
解得:x1=3,x2=﹣1,
∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).
画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),
由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,
此时y>0,即x2﹣2x﹣3>0,
∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1或x>3.
所以答案是x<﹣1或x>3

【考点精析】利用抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为4028,则△EDF的面积为(  )

A. 12 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点M为直线AB上一动点, 都是等边三角形,连接BN

求证:

分别写出点M在如图2和图3所示位置时,线段ABBMBN三者之间的数量关系不需证明

如图4,当时,证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,点EAB上,点DCB的延长线上,且ED=EC,如图,试确定线段AEDB的大小关系,并说明理由”.

(1)当点EAB的中点时,如图1,确定线段AEDB的大小关系,直接写出结论:AE   DB

(填“>”,“<”“=”).

(2)证明你得出的以上(1),如图2,过点EEFBC,交AC于点F.

(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED = EC.若ABC的边长为1,AE = 2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+EAF=180°,求证DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边△ABC的高为6,在这个三角形所在的平面内有一点P,若点P到直线AB的距离是1,点P到直线AC的距离是3,则点P到直线BC的距离可能是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,我们把点叫做点的衍生点.已知点的衍生点为,点的衍生点为,点的衍生点为这样依次得到点若点的坐标为,若点在第四象限,则范围分别为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于点D,点M,N分别是BDBC边上的动点,则MN+MC的最小值是_____

查看答案和解析>>

同步练习册答案