【题目】如图,中,,,与相切于点,求图中阴影部分的面积.(结果保留)
【答案】4-
【解析】
由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积-扇形AOB面积,求出即可.
连接OC,
∵AB与圆O相切,
∴OC⊥AB,
∵OA=OB,
∴∠AOC=∠BOC,∠A=∠B=30°,
在Rt△AOC中,∠A=30°,OA=4,
∴OC=OA=2,∠AOC=60°,
∴∠AOB=120°,AC==2,即AB=2AC=4,
则S阴影=S△AOB-S扇形=×4×2-=4-.
故图中阴影部分的面积为4-.
科目:初中数学 来源: 题型:
【题目】如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长( )
A. 2 km B. (2+)km C. (4-2) km D. (4-) km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(m,2),B(2,n)是一次函数y=﹣x+1的图象与反比例函数y=(k≠0)图象的两个交点.
(1)求反比例函数的解析式;
(2)根据图象,请直接写出关于x的不等式﹣x+1<的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某同学在一张硬纸板的中间画了一条4cm长的线段AB,过AB的中点O画直线CO,使∠AOC=60°,在直线CO上取一点P,作△PAB并剪下(纸板足够大),当剪下的△PAB为直角三角形时,AP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,P是AB的中点,Q是BC上一动点,△BPQ沿PQ折叠,点B落在点E处,延长QE交AD于M点,连接PM.
(1)求证:△PAM≌△PEM;
(2)当DQ⊥PQ时,将△CQD沿DQ折叠,点C落在线段EQ上点F处.
①求证:△PAM∽△DCQ;
②如果AM=1,sin∠DMF=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.
(1)发现
①线段DE、BG之间的数量关系是 ;
②直线DE、BG之间的位置关系是 .
(2)探究
如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)应用
如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:
①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,
其中说法正确的是( )
A. ①②④ B. ③④ C. ①③④ D. ①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,D、E分别在边AB、AC上,下列条件中,不能确定△ADE∽△ACB的是( )
A. ∠AED=∠B B. ∠BDE+∠C=180°
C. ADBC=ACDE D. ADAB=AEAC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com