【题目】2019年7月7日,国务院办公厅发布《国务院办公厅关于同意山西省承办2019年第二届全国青年运动会的函》,本届运动会初步确定在2019年8月至9月份举办,历时8至10天,预计约有55个代表团参赛,为了让每位运动员在比赛之余能有一个较好的疗养锻炼的环境,二青会筹备委员会,决定从某公司采购甲、乙两种健身器材共800件,已知购买2件甲器材与3件乙器材的价格相同,购买3件甲器材比2件乙器材的价格多1500元.
(1) 每件甲乙两种器材各多少元?
(2) 若购买甲、乙两种器材的价格不超过54万元,则最多可购买甲种器材多少件?
【答案】(1)900,600;(2)200.
【解析】
(1)设每件甲种器材价格为x元,每件乙种器材价格为y元,依题意“购买2件甲器材与3件乙器材的价格相同,购买3件甲器材比2件乙器材的价格多1500元”得
,计算即可得到答案;
(2)设甲种器材购买了m件,则乙种器材购买了(800-m)件.依题意得: 900m+600(800-m)≤540000,计算即可得到答案.
解(1)设每件甲种器材价格为x元,每件乙种器材价格为y元,依题意得:
解得:
答:每件甲乙两种器材各900元与600元.
(2)设甲种器材购买了m件,则乙种器材购买了(800-m)件.依题意得:
900m+600(800-m)≤540000
解得:m≤200
答:购买甲器材至多200件.
科目:初中数学 来源: 题型:
【题目】若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”。例如5是“完美数”,因为5=22+12,再如M=x2+2xy+2y2=(x+y)2 +y2(x、y是正整数),所以M也是“完美数”。
(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;
(2)试判断(x2+9y2)(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由;
(3)已知S=x2+4y2+4x-12y+k(x、y是正整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.
(1)求证:四边形ABCE是平行四边形;
(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.求证:△ABN≌△MCN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.
(1)如图,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠ETH的度数.
(2)如图,点G在点E的右侧,点H也在点F的右侧,若∠AEF=,∠CHG=β,其他条件不变,求∠ETH的度数.
(3)如图,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG的平分线EJ于点J.其他条件不变,若∠AEF=,∠CHG=β,求∠EJH的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=,求BC的长.
【答案】BC=8.
【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.
试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.
∵
∴
∴
点睛:直径所对的圆周角是直角.
【题型】解答题
【结束】
22
【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中
①小明家与学校的距离1200米;
②小华乘坐公共汽车的速度是240米/分;
③小华乘坐公共汽车后7:50与小明相遇;
④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是( )
A. 1 个B. 2个
C. 3 个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6 cm,AC=8 cm,则△ADE的周长为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com