【题目】如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
【答案】11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为:11.
科目:初中数学 来源: 题型:
【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示10,点C表示14,我们称点A和点C在数轴上相距20个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.
问:
(1)动点P从点A运动至C点需要时间为 秒;P、Q两点相遇时,求出相遇点M所对应的数是 ;
(2)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点、、在同一直线上,是的平分线,,,.
(1)求的度数(请写出解题过程).
(2)如以为一边,在的外部画,问边与边成一直线吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年7月7日,国务院办公厅发布《国务院办公厅关于同意山西省承办2019年第二届全国青年运动会的函》,本届运动会初步确定在2019年8月至9月份举办,历时8至10天,预计约有55个代表团参赛,为了让每位运动员在比赛之余能有一个较好的疗养锻炼的环境,二青会筹备委员会,决定从某公司采购甲、乙两种健身器材共800件,已知购买2件甲器材与3件乙器材的价格相同,购买3件甲器材比2件乙器材的价格多1500元.
(1) 每件甲乙两种器材各多少元?
(2) 若购买甲、乙两种器材的价格不超过54万元,则最多可购买甲种器材多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在咸宁创建“国家卫生城市”的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于有理数a, b,规定一种新运算: a★b= 2ab-b.
(1)计算: (-3)★4=______________;
(2)若方程(x-4)★3=6,求x的值;
(3)计算: 5★[(-2)★3]的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现定义运算:对于任意有理数a、b,都有ab=ab-b,如:23=2×3-3,请根据以上定义解答下列各题:
(1) 2(-3)=___________,x(-2)=___________;
(2) 化简:[(-x)3] (-2);
(3) 若x =3(-x),求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com