精英家教网 > 初中数学 > 题目详情

【题目】若一个整数能表示成a2b2ab是正整数)的形式,则称这个数为“完美数”。例如5是“完美数”,因为52212,再如Mx22xy2y2=(xy)2 y2xy是正整数),所以M也是“完美数”。

1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;

2)试判断(x29y2)(4y2x2)xy是正整数)是否为“完美数”,并说明理由;

3)已知Sx24y24x12ykxy是正整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由。

【答案】1)小于10的“完美数”可以为829是“完美数”;(2)是“完美数”,理由见解析;(3k=13,理由见解析.

【解析】

(1)利用定义便可求解.

(2)利用乘法公式求出乘积,然后配方将其变化与完美数进行比较,从而说明理由.

(3)利用配方,将S配成完美数,便可求解k的值.

解:(18=22+22

8是完美数.

29=

29是完美数.

(2) (x29y2)(4y2x2)= =

因此也是完美数.

(3) Sx24y24x12yk=

因此k-13=0

k=13

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.

解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.

AB、AD、DC之间的等量关系为   

(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.

(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为 BC上的点,F为 CD边上的点,且AE=AF,AB=4,设EC=x,△AEF 的面积为y,则yx之间的函数关系式是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 清明时节雨纷纷是必然事件

B. 了解路边行人边步行边低头看手机的情况可以采取对在路边行走的学生随机发放问卷的方式进行调查

C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是0.51.2,则甲队员的成绩好

D. 分别写有三个数字 -1,-2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一腰长为_________.

1 2 3 n+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上). 已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果精确到0.1m)

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条折线数轴.图中点A表示﹣6,点B表示10,点C表示14,我们称点A和点C在数轴上相距20个长度单位.动点P从点A出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.

问:

1)动点P从点A运动至C点需要时间为 秒;PQ两点相遇时,求出相遇点M所对应的数是

2)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:|m|=2,a,b互为相反数,且都不为零,c,d互为倒数.则2a+2b+(﹣3cd)﹣m的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201977日,国务院办公厅发布《国务院办公厅关于同意山西省承办2019年第二届全国青年运动会的函》,本届运动会初步确定在20198月至9月份举办,历时810天,预计约有55个代表团参赛,为了让每位运动员在比赛之余能有一个较好的疗养锻炼的环境,二青会筹备委员会,决定从某公司采购甲、乙两种健身器材共800件,已知购买2件甲器材与3件乙器材的价格相同,购买3件甲器材比2件乙器材的价格多1500.

(1) 每件甲乙两种器材各多少元?

(2) 若购买甲、乙两种器材的价格不超过54万元,则最多可购买甲种器材多少件?

查看答案和解析>>

同步练习册答案