如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)
(1)求点C到x轴的距离;
(2)求△ABC的面积;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.
【考点】坐标与图形性质;三角形的面积.
【分析】(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;
(2)根据三角形的面积公式列式进行计算即可求解;
(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(﹣2,3)、B(4,3),所以,即|x﹣3|=2,所以x=5或x=1,即可解答.
【解答】解:(1)∵C(﹣1,﹣3),
∴|﹣3|=3,
∴点C到x轴的距离为3;
(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)
∴AB=4﹣(﹣2)=6,点C到边AB的距离为:3﹣(﹣3)=6,
∴△ABC的面积为:6×6÷2=18.
(3)设点P的坐标为(0,y),
∵△ABP的面积为6,A(﹣2,3)、B(4,3),
∴,
∴|x﹣3|=2,
∴x=5或x=1,
∴P点的坐标为(0,5)或(0,1).
【点评】本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.
科目:初中数学 来源: 题型:
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有850名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污染的频率分布表和频率分布直方图,解答下列问题:
分 组 频数 频率
50.5~60.5 4 0.08
60.5~70.5 0.16
70.5~80.5 10
80.5~90.5 16 0.32
90.5~100.5
合 计 50 1.00
(1)填充频率分布表的空格;
(2)补全频数直方图,并在此图上直接绘制频数分布折线图;
(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?
(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
已知直线y1=2x与直线y2= -2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2④直线y1=2x与直线y2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是
A. ①③④ B. ②③ C. ①②③④ D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com