精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A30),B06)分别在x轴,y轴上,反比例函数(x0)的图像经过点D,则值为( )

A. 14 B. 14 C. 7 D. 7

【答案】B

【解析】过点DDFx轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,

∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,

∴△AOB∽△DFA,∴OADF=OBAF=ABAD,

ABBC=3:2,A(3,0),B(0,6),∴ABAD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,GCD上一点,延长BCE,使CE=CG,连接BG并延长交DEF.

(1)求证:△BCG≌△DCE;

(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A21).

(1)分别求出这两个函数的解析式;

(2)当x取什么范围时,反比例函数值大于0;

(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;

(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图所示,点三点的距离均等于为常数),到点的距离等于的所有点组成图形. 射线与射线关于对称,过点 C.

1)依题意补全图形(保留作图痕迹);

2)判断直线与图形的公共点个数并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx22mx+m22y轴交于点C

1)抛物线的顶点坐称为   ,点C坐标为   ;(用含m的代数式表示)

2)当m1时,抛物线上有一动点P,设P点横坐标为n,且n0

①若点Px轴的距离为2时,求点P的坐标;

②设抛物线在点C与点P之间部分(含点C和点P)最高点与最低点纵坐标之差为h,求hn之间的函数关系式,并写出自变量n的取值范围;

3)若点A(﹣32)、B22),连结AB,当抛物线yx22mx+m22与线段AB只有一个交点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,点.

(1)尺规作图:求作过三点的圆;

(2)设过三点的圆的圆心为M,利用网格,求点M的坐标;

(3)若直线相交,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca≠0)的图象与x轴交于AB两点,与y轴交于C点,且对称轴为x1,点B坐标为(﹣10),则下面的四个结论,其中正确的个数为(  )

2a+b04a2b+c0ac0④当y0时,﹣1x4

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小颖家经营着一家水果店,在杨梅旺销季节,她的父母经常去果园采购杨梅用于销售.果园的杨梅价格如下:购买数量不超过20筐,每筐进价20元;购买数量超过20筐,每筐进价18.小颖在观察水果店一段时间的销售情况后发现,当杨梅的售价为每筐30元时,每天可销售30筐;每筐售价提高1元,每天销量减少1筐;每筐售价降低1元,每天销量增加1.若每天购进的杨梅能全部售出,且售价不低于进价,从果园进货的运费为每天100.

1)设售价为每筐元,则每天可售出___________.

2)当每筐杨梅的售价定为多少元时,杨梅的日销售利润最大?最大日利润是多少元?

查看答案和解析>>

同步练习册答案