【题目】如图,已知二次函数的图象经过点A(4,4)、B(5,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.
【答案】(1)y=﹣x2+5x;(2)当点P在直线OA的上方时,线段PC的最大值是4;(3)存在,P的坐标是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
【解析】
(1)设y=ax(x﹣5),把A点坐标代入即可求出答案;
(2)根据点的坐标求出PC=﹣m2+4m,化成顶点式即可求出线段PC的最大值;
(3)当0<m<4时,仅有OC=PC,列出方程,求出方程的解即可;当m≥4时,PC=CD﹣PD=m2﹣4m,OC=m,分为三种情况:①当OC=PC时,m2﹣4m=m,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.
解:(1)设y=ax(x﹣5),
把A点坐标(4,4)代入得:4a(4﹣5)=4,
解得a=﹣1,
函数的解析式为y=﹣x2+5x,
答:二次函数的解析式是y=﹣x2+5x.
(2)解:0<m<4,PC=PD﹣CD,
∵D(m,0),PD⊥x轴,P在y=﹣x2+5x上,C在直线OA上,A(4,4),
∴P(m,﹣m2+5m),C(m,m)
∴PC=PD﹣CD=﹣m2+5m﹣m=﹣m2+4m,
=﹣(m﹣2)2+4,
∵a=﹣1<0,开口向下,
∴有最大值,
当D(2,0)时,PCmax=4,
答:当点P在直线OA的上方时,线段PC的最大值是4.
(3)当0<m<4时,仅有OC=PC,∴﹣m2+4m=m,
解得m=4﹣,
∴P(4﹣,2+3);
当m≥4时,PC=CD﹣PD=m2﹣4m,OC=m,
由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣5)2,
①当OC=PC时,m2﹣4m=m,
解得:m=4+或m=0(舍去),
∴P(4+,2﹣3);
②当OC=OP时,(m)2=m2+m2(m﹣5)2,
解得:m1=6,m2=4,
∵m=4时,P和A重合,即P和C重合,不能组成△POC,
∴m=4舍去,
∴P(6,﹣6);
③当PC=OP时,m2(m﹣4)2=m2+m2(m﹣5)2,
解得:m=5,
∴P(5,0),
答:存在,P的坐标是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
科目:初中数学 来源: 题型:
【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同。
(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率。(请利用树状图或列表法说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.
(1)求函数的表达式,并直接写出E、F两点的坐标.
(2)求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(,),E(0,-2),F(,0)
(1)当⊙O的半径为1时,
①在点D,E,F中,⊙O的关联点是 ;
②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边分别在x轴、y轴上,D是对角线的交点,若反比例函数y=的图象经过点D,且与矩形OABC的两边AB,BC分别交于点E,F.
(1)若D的坐标为(4,2)
①则OA的长是 ,AB的长是 ;
②请判断EF是否与AC平行,井说明理由;
③在x轴上是否存在一点P.使PD+PE的值最小,若存在,请求出点P的坐标及此时PD+PE的长;若不存在.请说明理由.
(2)若点D的坐标为(m,n),且m>0,n>0,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在轴上,记为,折痕为CE.直线CE的关系式是,与轴相交于点F,且AE=3.
(1)求OC长度;
(2)求点的坐标;
(3)求矩形ABCO的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com