【题目】在等腰直角三角形ABC中,∠BAC=90°,AB=AC=2,直角三角板含45°角的顶点P在边BC上移动(点P不与B,C重合),如图,直角三角板的一条直角边始终经过点A,斜边与边AC交于点Q,当△ABP为等腰三角形时,CQ的长为_____.
【答案】1或2﹣2.
【解析】
由等腰直角三角形的性质得BCAB=2,∠B=∠C=45°,再证明∠BAP=∠CPQ,则可判断△CPQ∽△BAP,所以,分两种情况讨论:当PB=PA时,易得AP⊥BC,BP=CPBC,利用相似比可计算出CQ=1;当BP=AB=2时,易得PC=22,利用相似比可计算出此时CQ=22.
∵△ABC为等腰直角三角形,∴BCAB=2,∠B=∠C=45°.
∵∠APC=∠B+∠BAP,即∠APQ+∠CPQ=∠B+∠BAP,而∠APQ=45°,∴∠BAP=∠CPQ,∴△CPQ∽△BAP,∴.分两种情况讨论:
当PB=PA时,则AP⊥BC,此时BP=CPBC,∴CQ1;
当BP=AB=2时,此时PC=22,∴CQ2.
综上所述:CQ的长为1或22.
故答案为:1或22.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,CD∥AB,AD=BC.已知A(﹣2,0),B(6,0),D(0,3),函数y=(x>0)的图象G经过点C.
(1)求点C的坐标和函数y=(x>0)的表达式;
(2)将四边形ABCD向上平移2个单位得到四边形A'B'C'D',问点B'是否落在图象G上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是( )
A. 此抛物线的解析式是y=﹣x2+3.5
B. 篮圈中心的坐标是(4,3.05)
C. 此抛物线的顶点坐标是(3.5,0)
D. 篮球出手时离地面的高度是2m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
已知是比例三角形,,,请直接写出所有满足条件的AC的长;
如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.
如图2,在的条件下,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n的值;
(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一段路基的横断面是直角梯形,如图1,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图2的技术要求.试求出改造后坡面的坡度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是( )
A. FA:FB=1:2 B. AE:BC=1:2
C. BE:CF=1:2 D. S△ABE:S△FBC=1:4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com