【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点.
(1)求证:△ABE≌△DBC;
(2)判定△BMN的形状,并证明你的结论.
【答案】
(1)解:在△ABE和△DBC中 ,
∴△ABE≌△DBC
(2)解:△MBN是等腰直角三角形.
证明如下:
∵△ABE≌△DBC,
∴AE=CD,∠BAM=∠BDN.
∵M,N分别是AE,CD的中点,
∴AM= AE,CN= CD.
∴AM=CN.
在△ABM和△DBN中 ,
∴ABM≌△DBN.
∴BM=BN,∠ABM=∠DBN.
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠ABM+∠DBM=90°.
∴∠DBN+∠DBM=∠MBN=90°.
∴△MBN是等腰直角三角形.
【解析】(1)在△ABE和△DBC中依据SAS可证明△ABE≌△DBC;(2)依据全等三角形的性质可得到AE=CD,∠BAM=∠BDN,然后依据中点的定义可证明AM=CN,依据SAS可证明ABM≌△DBN,然后全等三角形的性质可得到BM=BN,∠ABM=∠DBN,最后由∠ABM+∠MBE=∠MBE+∠EBN=90°可得到问题的答案.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个(I)从中任取1个球, 求取得红球或黑球的概率;
(II)列出一次任取2个球的所有基本事件;
(III)从中取3个球,求至少有一个红球的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com