精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数y= 的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为( )

A.
B.
C.
D.

【答案】D
【解析】∵函数y= 的图象经过二、四象限,∴k<0,

由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,

∴抛物线y=2kx2﹣4x+k2开口向下,

对称轴为x=﹣ = ,﹣1< <0,

∴对称轴在﹣1与0之间,

所以答案是:D.

【考点精析】根据题目的已知条件,利用反比例函数的图象和二次函数的图象的相关知识可以得到问题的答案,需要掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykxb与反比例函数yx0)交于A24),Ba1),与x轴,y轴分别交于点CD

1)直接写出一次函数ykxb的表达式和反比例函数yx0)的表达式;

2)求证:ADBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程: (2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在槐荫区初中数学文化年的开幕式上,同学们为我们展示了研究性学习怎样制作一个尽可能大的无盖长方体盒子”.现在有一个长是60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个相同的小正方形(如图).

(1)若设这些小正方形的边长为x cm,求图中阴影部分的面积.

(2)x-5时,求这个盒子的体积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与圆O交于点E,连结BE、DE.

(1)若圆的半径是3,∠EBA是30度,求AD的长度.
(2)求证:∠BED=∠C.
(3)若OA=5,AD=8,求切线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点A顺时针旋转60°得到ADE,点C的对应点E恰好落在BA的延长线上,DEBC交于点F,连接BD.下列结论不一定正确的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠βn倍角.

1)若∠M10°21′,请直接写出∠M3倍角的度数;

2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;

3)如图2,若∠AOC是∠AOB3倍角,∠COD是∠AOB4倍角,且∠BOD90°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“低碳环保”已经成为一种生活理念,同时也带来无限商机.某高科技发展公司投资2000万元成功研制出一种市场需求量较大的低碳高科技产品.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).(年获利=年销售额﹣生产成本﹣投资)
(1)试写出z与x之间的函数关系式;
(2)请通过计算说明,到第一年年底,当z取最大值时,销售单价x定为多少?此时公司是盈利了还是亏损了?
(3)若该公司计划到第二年年底获利不低于1130万元,请借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(中考·安徽)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).

(1)求k1,k2,b的值;

(2)求△AOB的面积;

(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M,N位于哪个象限,并简要说明理由.

查看答案和解析>>

同步练习册答案