精英家教网 > 初中数学 > 题目详情

【题目】如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.

【答案】
(1)解:∵AB为直径,

∴∠ADB=90°,即BD⊥AC.

在Rt△ADB中,∵AD=3,BD=4,

∴由勾股定理得AB=5.

∵∠ABC=90°,BD⊥AC,

∴△ABD∽△ACB,

=

=

∴BC=


(2)证明:连接OD,

∵OD=OB,

∴∠ODB=∠OBD;

又∵E是BC的中点,BD⊥AC,

∴DE=BE,

∴∠EDB=∠EBD.

∴∠ODB+∠EDB=∠OBD+∠EBD=90°,

即∠ODE=90°,

∴DE⊥OD.

∴ED与⊙O相切.


【解析】(1)根据勾股定理易求AB的长;根据△ABD∽△ACB得比例线段可求BC的长.(2)连接OD,证明DE⊥OD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校为了解学生“自主学习、合作交流”的情况,对八年级各班部分同学进行了一段时间的跟踪调査,将调查结果(A:特别好; B:较好; C:一般; D:较差)绘制成以下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)此次跟踪调查的学生有人;扇形统计图中,D类所占圆心角为度;
(2)补全条形统计图;
(3)如果该校八年级共有学生360人,试估计A类学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.

(1)求证:四边形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把几个数用大括号括起来,中间用逗号断开,如:{1,2,-3},{-2,7,,19},我们称之为集合,其中的数称为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5-a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好的集合.

(1)请你判断集合{1,2},{-2,1,2.5,4,7}是不是好的集合?

(2)请你再写出两个好的集合(不得与上面出现过的集合重复);

(3)写出所有好的集合中,元素个数最少的集合.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.

(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)
(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,BD是中线,延长BCE,使CE=CD

1)求证:DB=DE

2)过点DDF垂直BE,垂足为F,若CF=3,求ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是(  )

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象与x轴负半轴交于点A(﹣1,0),与y轴正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.

(1)求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且 ,求点M坐标;
(4)设抛物线的对称轴交x轴于点E,连接AP交y轴于点D,若点Q、N分别为两线段PE、PD上的动点,连接QD、QN,请直接写出QD+QN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E是边BC的中点,DE的延长线与AB的延长线相交于点F.

(1)求证:△CDE≌△BFE

(2)试连接BDCF,判断四边形CDBF的形状,并证明你的结论

查看答案和解析>>

同步练习册答案