分析 (1)由△ABC∽△ADE可知:∠AED=∠C,由∠BAC=∠C可知∠AED=∠BAC
(2)由△ABC∽△ADE可知:$\frac{AE}{AC}=\frac{DE}{BC}$,将相关数据代入即可求出DE的长度.
解答 解:(1)由△ABC∽△ADE可知:∠AED=∠C,
∵∠BAC=∠C
∴∠AED=∠BAC=40°
∴∠ADE=180°-∠BAC-∠AED=100°
(2)由△ABC∽△ADE可知:$\frac{AE}{AC}=\frac{DE}{BC}$,
∴$\frac{5}{8}$=$\frac{DE}{6}$,
∴DE=$\frac{15}{4}$
点评 本题考查相似三角形的性质,解题的关键是熟练运用相似三角形的性质,本题属于基础题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB=DC,AC=DB | B. | AB=DC,∠ABC=∠DCB | C. | AC=BD,∠A=∠D | D. | BO=CO,∠A=∠D |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com