精英家教网 > 初中数学 > 题目详情

【题目】本小题10分已知A BCO上的三个点,四边形OABC是平行四边形,过点CO的切线,交AB的延长线于点D

如图,求ADC的大小;

如图,经过点OCD的平行线,与AB交于点E,与交于点F,连接AF,求FAB的大小

【答案】ADC=90°FAB=15°

【解析】

试题由切线的性质可得OCCD,又由四边形OABC是平行四边形可得ADOC,即可求得ADC的度数.(连接OB,易证AOB是等边三角形;由OFCD可得AEO=ADC=90°;再根据垂径定理可得弧BF=弧AF,最后由圆周角定理即可求得FAB的度数

试题解析:解:CD为O的切线,C为切点,

OCCD,即OCD=90°

四边形OABC是平行四边形,

ABOC,即ADOC

ADC+OCD=180°,

∴∠ADC=180°-OCD=90°

如图,连接OB,则OB=OA=OC

四边形OABC是平行四边形,

OC=AB,

OA=OB=AB

AOB是等边三角形

于是,AOB=60°

由OFCD,又ADC=90°,

AEO=ADC=90°

OFAB有弧BF=弧AF

∴∠FOB=FOA=AOB=30°

∴∠FAB=FOB=15°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线yx23x+cy轴的交点为(02),则下列说法正确的是(  )

A. 抛物线开口向下

B. 抛物线与x轴的交点为(﹣10),(30

C. x1时,y有最大值为0

D. 抛物线的对称轴是直线x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BCD都在⊙O上,过点CACBDOB延长线于点A,连接CD,且∠CDB=OBD=30°DB=cm

1)求证:AC是⊙O的切线;

2求由弦CDBD与弧BC所围成的阴影部分的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC∠ABC90°AB12 cmAD8 cmBC22 cmAB⊙O的直径,动点P从点A开始沿AD边向点D1 cm/s的速度运动,动点Q从点C开始沿CB边向点B2 cm/s的速度运动,PQ分别从点AC同时出发.当其中一动点到达终点时,另一个动点也随之停止运动.设运动时间为t s.当t为何值时,PQ⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆Dy轴相切于点C(04),与x轴相交于AB两点,且AB6.

(1)D点的坐标和圆D的半径;

(2)sin ∠ACB的值和经过CAB三点的抛物线对应的函数表达式;

(3)设抛物线的顶点为F,证明直线AF与圆D相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,AB为切点,∠OAB30°.

1)求∠APB的度数;

2)当OA3时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB与函数yx>0)的图象交于点Am,2),B(2,n).过点AAC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使ODOC,且ACD的面积是6,连接BC

(1)求mkn的值;

(2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点 (不与B,C重合),∠ADE=∠B=α,DEAC于点E,且 .下列结论: ①△ADE∽△ACD;BD=6时,△ABD△DCE全等;③△DCE为直角三角形时,BD8④CD2=CECA.其中正确的结论是________(把你认为正确结论的序号都填上)

查看答案和解析>>

同步练习册答案