【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)共随机调查了___名学生,课外阅读时间在68小时之间有___人,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)请估计该校3000名学生每周的课外阅读时间不小于6小时的人数.
【答案】(1)100,25,图见解析;(2)m=40,E的圆心角为14.4;(3)不小于6小时的人数约为870人.
【解析】
(1)A组人数÷A组所占百分比=被调查总人数,将总人数×D组所占百分比=D组人数;
(2)m=C组人数÷调查总人数×100,E组对应的圆心角度数=E组占调查人数比例×360°;
(3)将样本中课外阅读时间不小于6小时的百分比乘以3000可得.
(1)随机调查学生数为:10÷10%=100(人),
课外阅读时间在68小时之间的人数为:100×25%=25(人),
补全图形如下:
(2)m= %=40%,E的占比为:1-(0.4+0.1+0.21+0.25)=0.04
E组对应的圆心角为:0.04×360°=14.4°;
(3)3000×(25%+4%)=870(人).
答:估计该校3000名学生每周的课外阅读时间不小于6小时的人数约为870人.
科目:初中数学 来源: 题型:
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.
结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究活动)
如图1:已知直线a与b平行,直线c与直线a、b分别相交于点A. B,直线d与直线a、b分别相交于点C. D,点P在直线c上移动,连接PC、PD.探究∠CPD、∠PCA、∠PDB之间的数量关系.
(探究过程)
(1)当点P在点A. B之间移动时,如图2,写出∠CPD、∠PCA、∠PDB之间的关系,并说明理由.
(2)当点P在A. B两点外移动时,如图3,写出∠CPD、∠PCA、∠PDB之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知、两地相距50千米,甲于某日下午1时骑自行车从地出发驶往地,乙也在同日下午骑摩托车按同路从地出发驶往地,如图所示,图中的折线和线段分别表示甲、乙所行驶的路程(千米)与该日下午时间(时)之间的关系.根据图象回答下列问题:
(1)甲出发___________小时后,乙才开始出发;乙的速度为__________千米/时;甲骑自行车在全程的平均速度为__________千米/时;
(2)乙出发多少小时后就追上了甲?写出解答过程;
(3)请你自己再提出一个符合题意的问题情境,并解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=3,BC=4,∠ACB=90°,E、F分别为AC、AB的中点,过E、F两点作⊙O,延长AC交⊙O于D.若∠CDO=∠B,则⊙O的半径为( )
A. 4 B. 2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是正方形对角线上一点,于,点、分别是、的中点.
(1)求证:;
(2)当点在对角线(不含、两点)上运动时,是否为定值?如果是,请求其值;如果不是,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴、轴分别交于点D、C,直线AB与轴交于点,与直线CD交于点.
(1)求直线AB的解析式;
(2)点E是射线CD上一动点,过点E作轴,交直线AB于点F,若以、、、为顶点的四边形是平行四边形,请求出点E的坐标;
(3)设P是射线CD上一动点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出符合条件的点Q的个数及其中一个点Q的坐标;否则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.
(1)求A,B两种型号空调的进价;
(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A种型号的空调多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com