【题目】如图,已知AB∥DE,∠B=60°,AE⊥BC,垂足为点E.
(1)求∠AED的度数;
(2)当∠EDC满足什么条件时,AE∥DC,证明你的结论.
【答案】(1)30°;(2)当∠EDC=30°时, AE∥DC,理由参见解析.
【解析】试题分析:(1)由已知AE⊥BC,可知∠AEC=90°,根据AB∥DE,∠B=60°,得出∠DEC=∠B= 60°(两直线平行,同位角相等),这样∠AED就求出来了;(2)此题是平行线的判定,上题已求出∠AED=30°,利用内错角相等,两直线平行,只要∠EDC=30°就可以判定AE∥DC.
试题解析:(1)∵ AB∥DE, ∴ ∠DEC=∠B= 60°(两直线平行,同位角相等),又∵ BC⊥AE,∴ ∠AEC=90°(垂直定义),所以 ∠AED=90°-60°=30°; (2)由⑴得∠AED=30°,根据内错角相等,两直线平行,∴ ∠AED=∠EDC时 AE∥DC,即当∠EDC=30°时, AE∥DC.
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;
(3)如图2,在(1)的条件下,擦去折痕AO,线段OP,连结BP,动点M在线段AP⊥(点M与点F、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;说明理由;若不变,求出线段EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,解答下列问题:3+32+33+34+…+32017的末位数字是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,是否存在点N,使得BM与NC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段话,并解决后面的问题.
观察下面一列数:1,2,4,8,……我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.
(1)等比数列5,-10,20,……的第4项是_____________;
(2)如果一列数1, 2, 3,……是等比数列,且公比是q,那么根据上述规定有, , ,……因此,可以得到2= 1q, 3= 2q= 1q·q= 1q2, 4= 3q= 1q2·q= 1q3,……则n=____________;(用含1与q的代数式表示)
(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD相交于点O,OE⊥AB于点O,OF⊥CD于点O,下列结论:
①∠EOF的余角有∠EOC和∠BOF;
②∠EOF=∠AOC=∠BOD;
③∠AOC与∠BOF互为余角;
④∠EOF与∠AOD互为补角.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两圆的半径 R 、r 分别是方程x2-7x+10=0的两根,两圆的圆心距为 7, 则两圆的位置关系是( )
A. 外离B. 相交C. 外切D. 内切
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com