精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠C=90°,CA=CB=1,将△ABC绕点B顺时针旋转45°,得到△DBE(A、D两点为对应点),画出旋转后的图形,并求出线段AE的长.

【答案】解:如图,
∵∠C=90°,CA=CB=1,
∴∠ABC=45°,AB= BC=
∵△ABC绕点B顺时针旋转45°,得到△DBE,
∴∠CBE=45°,BC=BE=1,
∵∠CBE=∠CBA,
∴点E在AB上,
∴AE=AB﹣BE= ﹣1.
【解析】在BA上截取BE=BC,过点B作DB⊥BC,且DB=AB,则连接DE得到△DBE,再利用等腰三角形的性质得到∠ABC=45°,AB= BC= ,利用旋转的性质得到∠CBE=45°,BC=BE=1,于是可判断点E在AB上,所以AE=AB﹣BE= ﹣1.
【考点精析】利用等腰直角三角形对题目进行判断即可得到答案,需要熟知等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是(
A.55°
B.30°
C.35°
D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,△DCE,△FEG是三个全等的等腰三角形,底边BC,CE,EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC,DC,DE于点P,Q,R.

(1)求证:△BFG∽△FEG,并求出BF的长;
(2)求AP:PC的值;
(3)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程平分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.

(1)求证:△ABE≌△CBF;
(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(x,|x﹣y|),则称点Q为点P的“关联点”.
(1)请直接写出点(2,2)的“关联点”的坐标;
(2)如果点P在函数y=x﹣1的图像上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=x2的图像上,当0≤m≤2时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.

(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y1= 与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.
(1)求k1 , k2 , b的值;
(2)求△AOB的面积;
(3)请直接写出不等式 x+b的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在﹣ ,0,﹣2, ,1中,绝对值最大的数为(
A.0
B.﹣
C.﹣2
D.

查看答案和解析>>

同步练习册答案