精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

【答案】解:在△ABC中,∠C=90°,AC=8,BC=6, ∴AB= =10,
又∵BD=BC=6,∴AD=AB﹣BD=4,
∵DE⊥AB,∴∠ADE=∠C=90°,
又∵∠A=∠A,∴△AED∽△ABC,

∴DE= = ×6=3.
【解析】依题意易证△AED∽△ABC,根据相似三角形的对应边的比相等,即可求出DE的长.
【考点精析】关于本题考查的勾股定理的概念和相似三角形的判定与性质,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一张矩形纸片ABCD如图所示那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为(
A.4
B.
C.8
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课外兴趣小组活动时,老师提出了如下问题: 如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,再连接BE,(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

(1)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF. ①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明

(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(﹣2,2 ),则点C的坐标为( )

A.( ,1)
B.(1,
C.(1,2)
D.(2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,CA=CB=1,将△ABC绕点B顺时针旋转45°,得到△DBE(A、D两点为对应点),画出旋转后的图形,并求出线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,如图①所示,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°, ]得到△AB′C′,则SAB'C:SABC=;直线BC与直线B′C′所夹的锐角为度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、C′在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;

(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

查看答案和解析>>

同步练习册答案