精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.

【答案】解:∵∠BOD=88°, ∴∠BAD=88°÷2=44°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°﹣44°=136°,
即∠BCD的度数是136°.
【解析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.
【考点精析】利用圆内接四边形的性质对题目进行判断即可得到答案,需要熟知把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为(
A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y= 的图像上,则菱形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,△DCE,△FEG是三个全等的等腰三角形,底边BC,CE,EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC,DC,DE于点P,Q,R.

(1)求证:△BFG∽△FEG,并求出BF的长;
(2)求AP:PC的值;
(3)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程平分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(x,|x﹣y|),则称点Q为点P的“关联点”.
(1)请直接写出点(2,2)的“关联点”的坐标;
(2)如果点P在函数y=x﹣1的图像上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=x2的图像上,当0≤m≤2时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.

(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4 ,tanα= ,求四边形OBEC的面积.

查看答案和解析>>

同步练习册答案