13£®ÒÑÖª£¬Èçͼ£¬°ÑƽÐÐËıßÐÎOABC·ÅÖÃÓÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OAÂäÔÚxÖáµÄÕý°ëÖáÉÏ£¬OBÂäÔÚyÖáµÄÕý°ëÖáÉÏ£¬OA=2£¬OB=4£¬Å×ÎïÏßy=ax2+bx+c¾­¹ýA¡¢O¡¢CÈýµã£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÊÔÎÊÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãT£¬Ê¹µÃ|TO-TC|µÄÖµ×î´ó£¿Èô´æÔÚ£¬Çó³öTµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÑÖªµãPΪÅ×ÎïÏßÔÚµÚÒ»ÏóÏÞÄÚÉϵÄÒ»¸ö¶¯µã£¬µãQΪxÖáÉÏÈÎÒâÒ»µã£¬ÈôÒÔO¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷OBCÏàËÆ£¬ÇëÇó³öµãQµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¬¿ÉµÃA¡¢Cµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©Èý½ÇÐÎÁ½±ßÖ®²î´óÓÚµÚÈý±ß£¬¿ÉµÃO¡¢C¡¢TÔÚͬһÌõÖ±ÏßÉÏ£¬¸ù¾Ý½â·½³Ì×飬¿ÉµÃTµã×ø±ê£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±¡÷OQP¡×¡÷OBCʱ£¬¢Úµ±¡÷OQP¡×¡÷CBOʱ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÆ½ÐÐËıßÐÎOABC£¬µÃ
CB=OA=2£¬A£¨2£¬0£©£¬C£¨-2£¬4£©£®
½«O¡¢A¡¢CµÄ×ø±ê´úÈëy=ax2+bx+c£¬µÃ
$\left\{\begin{array}{l}{4a+2b+c=0}\\{c=0}\\{4a-b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-1}\\{c=0}\end{array}\right.$£¬
¸ÃÅ×ÎïÏߵĽâÎöʽy=$\frac{1}{2}$x2-x£»
£¨2£©Èçͼ1£¬
ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚÒ»µãT£¬Ê¹µÃ|TO-TC|µÄÖµ×î´ó£¬
ÉèOCµÄ½âÎöʽΪy=kx£¬½«Cµã×ø±ê´úÈ룬µÃ
-2k=4£¬
½âµÃk=-2£¬
Ö±ÏßOCµÄ½âÎöʽΪy=-2x£¬
ÁªÁ¢Ö±ÏßOC¡¢¶Ô³ÆÖᣬµÃ
$\left\{\begin{array}{l}{y=-2x}\\{x=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$£¬
TµãµÄ×ø±êÊÇ£¨1£¬-2£©£»
£¨3£©ÉèQ£¨a£¬0£©£¬P£¨a£¬$\frac{1}{2}$a2-a£©£¬
Èçͼ2£¬
¢Ùµ±¡÷OQP¡×¡÷OBCʱ£¬$\frac{OQ}{OB}$=$\frac{QP}{BC}$£¬¼´$\frac{a}{4}$=$\frac{\frac{1}{2}{a}^{2}-a}{2}$£¬
»¯¼ò£¬µÃ
a2-3a=0£¬
½âµÃa=6£¬¼´Q1£¨3£¬0£©£¬
¢Úµ±¡÷OQP¡×¡÷CBOʱ£¬$\frac{OQ}{BC}$=$\frac{PQ}{OB}$£¬¼´$\frac{a}{2}$=$\frac{\frac{1}{2}{a}^{2}-a}{4}$£¬
»¯¼ò£¬µÃ$\frac{1}{2}$a2-3a=0£¬
½âµÃa=6£¬¼´Q2£¨6£¬0£©£¬
×ÛÉÏËùÊö£ºQ1£¨3£¬0£©£¬Q2£¨6£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁËÆ½ÐÐËıßÐεÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»£¨2£©ÀûÓÃÈý½ÇÐÎÈý±ßµÄ¹ØÏµµÃ³öC¡¢O¡¢TÔÚͬһÌõÖ±ÏßÉÏÊǽâÌâ¹Ø¼ü£¬ÀûÓÃÁ˽â¶þÔªÒ»´Î·½³Ì×飻£¨3£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʵijö¹ØÓÚaµÄ·½³Ì£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èç¹û$\frac{a}{b}=\frac{3}{4}$£¬ÄÇô$\frac{b}{a+b}$=$\frac{4}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®½â²»µÈʽ×é$\left\{\begin{array}{l}{\frac{x-3}{2}+3¡Ýx+1}\\{1-3£¨x-1£©£¼8-x}\end{array}\right.$£¬²¢Ð´³ö¸Ã²»µÈʽ×éµÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆËãÓ뻯¼ò
£¨1£©$\sqrt{\frac{1}{2}}-\sqrt{8}+\frac{1}{{\sqrt{2}}}$£»                   
£¨2£©$\frac{a-1}{a}¡Â£¨{a-\frac{1}{a}}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆËãÌâ
£¨1£©£¨xy2£©2-2x£¨xy4£©
£¨2£©£¨-2x-1£©£¨3x-2£©
£¨3£©½â²»µÈʽ2x-4¡Ü3£¨2-x£©²¢°Ñ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´
£¨4£©½â²»µÈʽ×é$\left\{\begin{array}{l}{x+3£¾0}\\{3£¨x-1£©¡Ü2x-1}\end{array}\right.$²¢°Ñ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®´üÖй²ÓÐ2¸öºìÇò£¬4¸ö»ÆÇò£¬´ÓÖÐÈÎȡһ¸öÇòÊǰ×Çò£¬Õâ¸öʼþÊDz»¿ÉÄÜʼþ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¸ø³öÏÂÁи÷ʽ£º$\frac{x+y}{2}$£¬$\frac{y}{x-1}$£¬$\frac{x}{¦Ð}$£¬-$\frac{n}{m}$£¬ÆäÖУ¬·ÖʽÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨2x+y£©2-£¨2x-y£©£¨2x+y£©-4xy£»ÆäÖÐx=2015£¬y=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐͼÐÎÖУ¬²»ÊÇÖÐÐĶԳÆÍ¼ÐÎÓУ¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸