【题目】程大位是我国明朝商人,珠算发明家他60岁时完成的直指算法统宗是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法对书中某一问题改编如下:
一百馒头一百僧,大僧三个更无争;
小僧三人分一个,大僧共得几馒头.
一百馒头一百僧,大僧三个更无争;
小僧三人分一个,大僧共得几馒头.
意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得 个馒头
A. 25B. 72C. 75D. 90
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过三点
(1)求抛物线的解析式;
(2)在直线上方的抛物线上是否存在一点,使的面积等于的面积的一半?若存在,求出点的坐标;若不存在,说明理由;
(3)点为抛物线上一动点,在轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,,垂足为点,是外角的平分线,,垂足为点,连接交于点.
求证:四边形为矩形;
当满足什么条件时,四边形是一个正方形?并给出证明.
在的条件下,若,求正方形周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,分别与x轴交于点A,B(A在B的左侧),与y轴交于点C.
(1)求b的值;
(2)若将线段BC绕点C顺时针旋转90°得到线段CD,问:点D在该抛物线上吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点在斜边上,以为圆心,为半径作圆,分别与、相交于点、,连接,已知.
(1)求证:是的切线;
(2)若,,求劣弧与弦所围阴影图形的面积;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于两点,过点作轴,垂足为点,且。
(1)求一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式的解集;
(3)若是反比例函数图象上的两点,且,求实数的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某居民楼的前面有一围墙,在点处测得楼顶的仰角为,在处测得楼顶的仰角为,且的高度为2米,之间的距离为20米(,,在同一条直线上).
(1)求居民楼的高度.
(2)请你求出、两点之间的距离.(参考数据:,,,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.
(1)求该抛物线的解析式;
(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;
(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com