【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
【答案】(1);(-2,);(1,0);
(2)N点的坐标为(0,),(0,);
(3)E(-1,-)、F(0,)或E(-1,),F(-4,)
【解析】
(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可
(1)∵,a=,则抛物线的“衍生直线”的解析式为;
联立两解析式求交点,解得或,
∴A(-2,),B(1,0);
(2)如图1,过A作AD⊥y轴于点D,
在中,令y=0可求得x= -3或x=1,
∴C(-3,0),且A(-2,),
∴AC=
由翻折的性质可知AN=AC=,
∵△AMN为该抛物线的“衍生三角形”,
∴N在y轴上,且AD=2,
在Rt△AND中,由勾股定理可得
DN=,
∵OD=,
∴ON=或ON=,
∴N点的坐标为(0,),(0,);
(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,
∴∠ ACK=∠ EFH,
在△ ACK和△ EFH中
∴△ ACK≌△ EFH,
∴FH=CK=1,HE=AK=,
∵抛物线的对称轴为x=-1,
∴ F点的横坐标为0或-2,
∵点F在直线AB上,
∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,
∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,
∴ E(-1,-);
当F点的横坐标为-2时,则F与A重合,不合题意,舍去;
②当AC为平行四边形的对角线时,
∵ C(-3,0),且A(-2,),
∴线段AC的中点坐标为(-2.5, ),
设E(-1,t),F(x,y),
则x-1=2×(-2.5),y+t=,
∴x= -4,y=-t,
-t=-×(-4)+,解得t=,
∴E(-1,),F(-4,);
综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)
科目:初中数学 来源: 题型:
【题目】为加快5G网络建设,某移动通信公司在一个坡度为2:1的山腰上建了一座5G信号通信塔AB,在距山脚C处水平距离39米的点D处测得通信塔底B处的仰角是35°,测得通信塔顶A处的仰角是49°,(参考数据:sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),则通信塔AB的高度约为( )
A.27米B.31米C.48米D.52米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:
环数 | 6 | 7 | 8 | 9 |
人数 | 1 | 5 | 2 |
(1)填空:10名学生的射击成绩的众数是 ,中位数是 .
(2)求这10名学生的平均成绩.
(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论正确的个数是( )
(1)一个多边形的内角和是外角和的3倍,则这个多边形是六边形;
(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5;
(3)若△ABC∽△DEF,相似比为1:4,则S△ABC:S△DEF=1:4;
(4)若等腰三角形一个角为80°,则底角为80°或50°.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于,两点.
(1)求反比例函数的解析式;
(2)求的面积;
(3)如图写出反比例函数值大于一次函数值的自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m(1<m<4),连接AC,BC,DB,DC.
(1)求抛物线的解析式.
(2)当△BCD的面积等于△AOC的面积的时,求m的值.
(3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)
根据要求,解答下列问题.
(1)根据要求,解答下列问题.
①方程x2-2x+1=0的解为________________________;
②方程x2-3x+2=0的解为________________________;
③方程x2-4x+3=0的解为________________________;
…… ……
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2-9x+8=0的解为________________________;
②关于x的方程________________________的解为x1=1,x2=n.
(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com