精英家教网 > 初中数学 > 题目详情

【题目】为加快5G网络建设,某移动通信公司在一个坡度为21的山腰上建了一座5G信号通信塔AB,在距山脚C处水平距离39米的点D处测得通信塔底B处的仰角是35°,测得通信塔顶A处的仰角是49°(参考数据:sin35°≈0.57tan35°≈0.70sin49°≈0.75tan49°≈1.15),则通信塔AB的高度约为( )

A.27B.31C.48D.52

【答案】A

【解析】

根据题意画出图形,延长ABDC延长线于点E,设CEx、则BE2xDE39+x,由tanBDE求得x21,即可知DE39+x60BE2x42,再由AEDEtanADE69,根据ABAEBE可得答案.

解:如图所示,延长ABDC延长线于点E,则∠DEA90°

由题意知∠DBC35°、∠ADE49°CD39米,BC的坡度为21

CEx、则BE2xDE39+x

tanBDE可得≈0.7

解得:x21

DE39+x60BE2x42

RtADE中,AEDEtanADE≈60×1.1569

ABAEBE694227()

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABO的弦,OAB=45°C是优弧AB上的一点,BDOA,交CA延长线于点D,连接BC

1)求证:BDO的切线;

2)若AC=CAB=75°,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知k为实数,关于x的方程为x2(k2)x2k1.

(1)判断方程有无实数根.

(2)当方程的根和k都是有理数时,请直接写出其中k1个值和相应方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABACADCE是高,连接DE

1)求证:BC2DE

2)若∠BAC50°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

⑴请你补全这个输水管道的圆形截面;

⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4AD=10.直角尺的直角顶点PAD上滑动时(点PA,D不重合),一直角边经过点C,另一直角边AB交于点E

1)求证:

2)是否存在这样的点P,使的周长等于周长的2倍?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+cabc为常数,a≠0)的衍生直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其衍生三角形.已知抛物线与其衍生直线交于AB两点(点A在点B的左侧),与x轴负半轴交于点C

1)填空:该抛物线的衍生直线的解析式为 ,点A的坐标为 ,点B的坐标为

2)如图,点M为线段CB上一动点,将ACMAM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的衍生三角形,求点N的坐标;

3)当点E在抛物线的对称轴上运动时,在该抛物线的衍生直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案