【题目】如图,△ABC中,AB=AC,AD、CE是高,连接DE.
(1)求证:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度数.
【答案】(1)见解析;(2)∠ADE=40°.
【解析】
(1)根据等腰三角形的性质得到BD=CD,根据直角三角形的性质即可得到结论;
(2)根据等腰三角形的性质得到∠BAD=∠BAC,求得∠BAD=25°,根据三角形的内角和定理得到∠BCE=∠BAD=25°,于是得到结论.
解:(1)∵AB=AC,AD⊥BC,
∴BD=CD,
∵CE⊥AB,
∴∠BEC=90°,
∴DE=BD=CD,
∴BC=2DE;
(2)∵AB=AC,AD⊥BC,,
∴∠BAD=∠BAC,
∵∠BAC=50°,
∴∠BAD=25°,
∵AD⊥BC,CE⊥AB,
∴∠ADB=∠CEB=90°,
∵∠B=∠B,
∴∠BCE=∠BAD=25°,
∵DE=CD,
∴∠DEC=∠DCE=25°,
∴∠BDE=50°,
∴∠ADE=40°.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.
(1)求证:∠B=∠CAD;
(2)若CE=2,∠B=30°,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC是⊙O的切线,AC与⊙O交于D,OE∥BD交⊙O于E.
(1)求证:BE平分∠ABD.
(2)当∠A=∠E,BC=2时,求⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加快5G网络建设,某移动通信公司在一个坡度为2:1的山腰上建了一座5G信号通信塔AB,在距山脚C处水平距离39米的点D处测得通信塔底B处的仰角是35°,测得通信塔顶A处的仰角是49°,(参考数据:sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),则通信塔AB的高度约为( )
A.27米B.31米C.48米D.52米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的左边),与y轴交于点C.
(1)如图1,点P,Q都在直线BC上方的抛物线上,且点P的横坐标比点Q的横坐标小1,直线PQ与x轴交于点D,过点P,Q作直线BC的垂线,垂足分别为点E,F.当PE+QF的值最大时,将四边形PEFQ沿射线PQ方向平移,记平移过程中的四边形PEFQ为P1E1F1Q1,连接CP1,P1F1,求CP1+P1F1+Q1D的最小值,并求出对应的点Q1的坐标.
(2)如图2,对于满足(1)中条件的点Q1,将线段AQ1绕原点O顺时针旋转90°,得线段A1Q2,点M是抛物线对称轴上一点,点N是坐标平面内一点,点N1是点N关于直线A1Q2的对称点,若以点A1,Q1,M,N1为顶点的四边形是一个矩形,请直接写出所有符合条件的点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中的弦BC等于⊙O的半径,延长BC到D,使BC=CD,点A为优弧BC上的一个动点,连接AD,AB,AC,过点D作DE⊥AB,交直线AB于点E,当点A在优弧BC上从点C运动到点B时,则DE+AC的值的变化情况是( )
A.不变B.先变大再变小C.先变小再变大D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA∶AB=1∶2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m(1<m<4),连接AC,BC,DB,DC.
(1)求抛物线的解析式.
(2)当△BCD的面积等于△AOC的面积的时,求m的值.
(3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com