【题目】如图,⊙O中的弦BC等于⊙O的半径,延长BC到D,使BC=CD,点A为优弧BC上的一个动点,连接AD,AB,AC,过点D作DE⊥AB,交直线AB于点E,当点A在优弧BC上从点C运动到点B时,则DE+AC的值的变化情况是( )
A.不变B.先变大再变小C.先变小再变大D.无法确定
【答案】B
【解析】
如图,连接OA,OC,OB,EC,作OF⊥AC于F,根据直角三角形斜边中线的性质可得EC=CD=CB,根据等腰三角形的性质可得∠CBE=∠CEB,∠AOF=∠COF,根据圆周角定理可得∠AOC=2∠ABC,利用外角性质可得∠DCE=2∠CBE,即可证明∠AOC=∠DCE,利用SAS可证明△AOC≌△DCE,可得AC=DE,即可得出DE+AC=2AC,根据AC的变化即可得答案.
如图,连接OA,OC,OB,EC,作OF⊥AC于F.
∵DE⊥AB,
∴∠DEB=90°,
∵DC=BC,
∴EC=CD=CB,
∵BC=OC=OB=OA,CD=BC,
∴OA=OC=CD=CE=CB,
∴∠CBE=∠CEB,
∵OF⊥AC,OA=OC,
∴∠AOF=∠COF,
∵∠AOC=2∠ABC,∠DCE=∠CEB+∠CBE=2∠CBE,
∴∠AOC=∠DCE,
∴△AOC≌△DCE(SAS),
∴AC=DE,
∴AC+DE=2AC,
观察图象可知AC的值先变大再变小,
故AC+DE的值先变大再变小,
故选B.
科目:初中数学 来源: 题型:
【题目】石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知k为实数,关于x的方程为x2+(k+2)x+2k=1.
(1)判断方程有无实数根.
(2)当方程的根和k都是有理数时,请直接写出其中k的1个值和相应方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
⑴请你补全这个输水管道的圆形截面;
⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是抛物线对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.
(1)求证:
(2)是否存在这样的点P,使的周长等于周长的2倍?若存在,求出DP的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)
A.60B.70C.80D.90
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
(1)求条形图中被遮盖的数,并计算册数的平均数和中位数;
(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了__________人.从补查结果看,学生的读书册数的平均数与之前相比______________.(变大、变小、不变).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com