精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点MN分别在ABBC上,AB=4AM=1BN=.

(1)求证:ΔADMΔBMN

(2)求∠DMN的度数.

【答案】1)见解析;(290°

【解析】

1)根据,即可推出,再加上∠A=B=90°,就可以得出△ADM∽△BMN

2)由△ADM∽△BMN就可以得出∠ADM=BMN,又∠ADM+AMD=90°,就可以得出∠AMD+BMN=90°,从而得出∠DMN的度数.

(1)AD=4AM=1

MB=AB-AM=4-1=3

又∵∠A=B=90°

ΔADMΔBMN

(2)ΔADMΔBMN

∴∠ADM=BMN

∴∠ADM+AMD=90°

∴∠AMD+BMN=90°

∴∠DMN=180°-BMN-AMD=90°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

⑴请你补全这个输水管道的圆形截面;

⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24/千克,芒果的售价为20/千克,总销售额为4320.

(1)求水果店第一次售出苹果和芒果各多少千克;

(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+cabc为常数,a≠0)的衍生直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其衍生三角形.已知抛物线与其衍生直线交于AB两点(点A在点B的左侧),与x轴负半轴交于点C

1)填空:该抛物线的衍生直线的解析式为 ,点A的坐标为 ,点B的坐标为

2)如图,点M为线段CB上一动点,将ACMAM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的衍生三角形,求点N的坐标;

3)当点E在抛物线的对称轴上运动时,在该抛物线的衍生直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如果每件的售价每涨1元,那么每星期少卖10件.设每件涨价x元,每星期的销量为y件.

1)求yx的函数关系式;

2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.

1)求条形图中被遮盖的数,并计算册数的平均数和中位数;

2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了__________.从补查结果看,学生的读书册数的平均数与之前相比______________.(变大、变小、不变).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2bx+c的图象经过点M10),顶点坐标(mn

1)当x5时,yx的增大而增大,求b的取值范围;

2)求n关于m的函数解析式;

3)求该二次函数的图象顶点最低时的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,点边的中点,以点为顶点的的两边分别与边交于点,且互补.

1)如图1,若,且,请直接写出:线段的数量关系______

2)如图2,若,请直接写出:线段的数量关系______

3)如图3,若,探索线段的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,点Ax轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为(  )

A. (2,2 B. (﹣2,4) C. (﹣2,2 D. (﹣2,2

查看答案和解析>>

同步练习册答案