精英家教网 > 初中数学 > 题目详情

【题目】随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24/千克,芒果的售价为20/千克,总销售额为4320.

(1)求水果店第一次售出苹果和芒果各多少千克;

(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.

【答案】(1)第一次售出苹果80千克,售出芒果120千克;(2)第二次芒果的售价为13/千克.

【解析】

(1)设水果店第一次售出苹果x千克,售出芒果y千克,根据某水果店第一次售出苹果和芒果共200千克且总销售额为4320元,即可得出关于xy的二元一次方程组,解之即可得出结论;

(2)设第二次芒果的售价为m/千克,则第二次售出芒果[120+20(20m)]千克,根据总价=单价×数量,即可得出关于m的一元二次方程,解之即可得出结论.

解:(1)设水果店第一次售出苹果x千克,售出芒果y千克,

依题意,得:

解得:.

答:水果店第一次售出苹果80千克,售出芒果120千克.

(2)设第二次芒果的售价为m/千克,则第二次售出芒果[120+20(20m)]千克,

依题意,得:24×80+m[120+20(20m)]4320+980

整理,得:m226m+1690

解得:m1m213.

答:第二次芒果的售价为13/千克.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.

(1)请完成如下操作:

①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;

②根据图形提供的信息,只借助直尺确定该圆弧所在圆的圆心D,并连接AD、CD.(保留作图痕迹,不写作法)

(2)请在(1)的基础上,完成下列填空与计算:

①写出点的坐标:C 、D

②⊙D的半径= ;(结果保留根号)

③求扇形ADC的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c过顶点A02),以原点O为圆心,OA为半径的圆与抛物线的另两个交点为BC,且BC的左侧,△ABC有一个内角为60°

1)求抛物线的解析式.

2)若MN与直线y=﹣2x平行,Mx1y1),Nx2y2),MN都在抛物线上,且MN位于直线BC的两侧,y1y2MEBCENFBCF,解决以下问题:

①求证:.

②求△MBC外心的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:

环数

6

7

8

9

人数

1

5

2

1)填空:10名学生的射击成绩的众数是   ,中位数是   

2)求这10名学生的平均成绩.

3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC中,ABAC,∠ABC35°,EBC边上一点且AECED

BC边上的中点,连接ADAE

1)求∠DAE的度数;

2)若BD上存在点F,且∠AFE=∠AEF,求证:BFCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论正确的个数是(  )

(1)一个多边形的内角和是外角和的3倍,则这个多边形是六边形;

(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5;

(3)若ABC∽△DEF,相似比为1:4,则SABC:SDEF=1:4;

(4)若等腰三角形一个角为80°,则底角为80°50°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于两点.

1)求反比例函数的解析式;

2)求的面积;

3)如图写出反比例函数值大于一次函数值的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点MN分别在ABBC上,AB=4AM=1BN=.

(1)求证:ΔADMΔBMN

(2)求∠DMN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,,点分别在边上(不与端点重合),,射线延长线于点,点在直线上,.

1)(观察猜想)如图1,点在射线上,当时,

①线段的数量关系是______

的度数是______

2)(探究证明)如图2在射线上,当时,判断并证明线段的数量关系,求的度数;

3)(拓展延伸)如图3,点在直线上,当时,,点边上的三等分点,直线与直线交于点,请直接写出线段的长.

查看答案和解析>>

同步练习册答案