【题目】已知中,,,点,分别在边,上(不与端点重合),,射线交延长线于点,点在直线上,.
(1)(观察猜想)如图1,点在射线上,当时,
①线段与的数量关系是______;
②的度数是______;
(2)(探究证明)如图2点在射线上,当时,判断并证明线段与的数量关系,求的度数;
(3)(拓展延伸)如图3,点在直线上,当时,,点是边上的三等分点,直线与直线交于点,请直接写出线段的长.
【答案】(1)①,②;(2);(3)满足条件的的长为或4.
【解析】
(1)①延长交于点,交于点O,先由等边对等角得到,然后证明,即可得到BM=AN;②再由等边对等角和平行线推出,由三角形外角性质得到,可推出,即可得.
(2)同理可证,同(1)可推出 ,最后得到.
(3)当时,作于,在中,利用60°可求出边长,然后在在中求出BM,再由,利用相似比求出CF,当时,同法可求.
(1)①如图1中,延长交于点,交于点O.
∵,
∴,
∵,,
∴,
∴;
②∵,
∴,
∴,
∵,
∴,
∵,
∴,,
∵∠ANB+∠ENF=180°,∠BMA+∠BMC=180°,
∴,
∴,
∵,,
∴,
∴,
故答案为①,②.
(2)如图2中,设交于点.
∵,
∴,
∵,,
∴,
∴,,
∴,
∵,
∴,
∵,
∴,,
∴,
∴,
∵,,
∴,
∴.
(3)①如图3-1中,当时,作于.
由题意,在中,
∵,,
∴,,,
在中,,
由(2)可知:,∵,
∴,
∴,
∴,
∴,
∴.
②如图3-2中,当时,同法可得.
综上所述,满足条件的的长为或4.
科目:初中数学 来源: 题型:
【题目】随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24元/千克,芒果的售价为20元/千克,总销售额为4320元.
(1)求水果店第一次售出苹果和芒果各多少千克;
(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+2bx+c的图象经过点M(1,0),顶点坐标(m,n)
(1)当x<5时,y随x的增大而增大,求b的取值范围;
(2)求n关于m的函数解析式;
(3)求该二次函数的图象顶点最低时的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点为边的中点,以点为顶点的的两边分别与边,交于点,,且与互补.
(1)如图1,若,且,请直接写出:线段与的数量关系______;
(2)如图2,若,请直接写出:线段与的数量关系______;
(3)如图3,若,探索线段与的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在网格图中,与是位似图形.
若在网格上建立平面直角坐标系,使得点A的坐标为,点的坐标为,写出点B的坐标;
以点A为位似中心,在网格图中作,使和位似,且位似比为1:2;
在图上标出与的位似中心P,并写出点P的坐标,计算四边形ABCP的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,关于点的图象变化有以下说法:
①点关于轴的对称点的坐标为
②点与点关于原点对称
③把点先向右平移个单位长度,再向下平移个单位长度得到点
④把点绕原点顺时针旋转,得到点
其中,正确的说法是( )
A. ①③④ B. ①②③④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A. (2,2) B. (﹣2,4) C. (﹣2,2) D. (﹣2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把1,1,2,3,5,8,13,21,…组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,弧P1P2,弧P2P3,弧P3P4,…得到斐波那契螺旋线,然后依次连接P1P2,P2P3,P3P4得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上P10的点的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com