【题目】如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE.求证:四边形ABCD是平行四边形.
【答案】见解析
【解析】
证明:证法一:∵BF=DE,
∴BF-EF=DE-EF,即BE=DF.
又∵AE⊥BD,CF⊥BD.
∴∠AEB=∠CFD=90°.
∵在△ABE和△CDF中,BE=DF,∠AEB=∠CFD,AE=CF,∴△ABE≌△CDF(SAS),∴AB=CD.
∵在△ADE和△CBF中,AE=CF,∠AED=∠BFC=90°,DE=BF,∴△ADE≌△CBF(SAS),∴AD=BC.
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
证法二:同证法一,得△ABE≌△CDF,
∴∠ABE=∠CDF,
∴AB∥CD.同理可证:AD∥BC,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
证法三:同证法一,得△ABE≌△CDF,
∴AB=CD,∠ABE=∠CDF,∴AB∥CD.
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
证法四:连接AC,交BD于点O.
∵∠AEO=∠CFO=90°,∠AOE=∠COF,AE=CF.
∴△AOE≌△COF(AAS),∴AO=CO,EO=FO.
∵BF=DE,∴BE=DF,∴BE+EO=DF+FO,即BO=DO.
∴四边形ABCD是平行四边形(两条对角线互相平分的四边形是平行四边形).
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.
(1)在图1中,射线OC在∠AOB的内部.
①若锐角∠BOC=30°,则∠MON= °;
②若锐角∠BOC=n°,则∠MON= °.
(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.
(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.
(1)求证:AB=BF;
(2)如果BE=2EC,求证:DG=GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.
(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______________;
(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=4.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.
(1)篮球和排球单价各是多少元?
(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?
(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:
(1)如图,在平面内有不共线的3个点A,B,C.
(a)作直线AB,射线AC,线段BC;
(b)延长BC到点D,使CD=BC,连接AD;
(c)作线段AB的中点E,连接CE;
(d)测量线段CE和AD的长度,直接写出二者之间的数量关系_______.
(2) 有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.
注意:只需添加一个符合要求的正方形,并用阴影表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题:如图1,在平行四边形ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
求证:EG =AG+BG.
小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.
参考小明同学的思路,探究并解决下列问题:
(1)完成上面问题中的证明;
(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com