精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在四边形ABCD中,AEBD于E,CFBD于F,AE=CF,BF=DE.求证:四边形ABCD是平行四边形.

【答案】见解析

【解析】

证明:证法一:BF=DE,

BF-EF=DE-EF,即BE=DF.

AEBD,CFBD.

∴∠AEB=CFD=90°

ABE和CDF中,BE=DF,AEB=CFD,AE=CF,∴△ABE≌△CDF(SAS),AB=CD.

ADE和CBF中,AE=CF,AED=BFC=90°,DE=BF,∴△ADE≌△CBF(SAS),AD=BC.

四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).

证法二:同证法一,得ABE≌△CDF,

∴∠ABE=CDF,

ABCD.同理可证:ADBC,

四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).

证法三:同证法一,得ABE≌△CDF,

AB=CD,ABE=CDF,ABCD.

四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).

证法四:连接AC,交BD于点O.

∵∠AEO=CFO=90°,AOE=COF,AE=CF.

∴△AOE≌△COF(AAS),AO=COEO=FO.

BF=DE,BE=DF,BE+EO=DF+FO,即BO=DO.

四边形ABCD是平行四边形(两条对角线互相平分的四边形是平行四边形).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列运算中,正确的是(
A.
B.(a23=a6
C.3a?2a=6a
D.32=﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.

(1)在图1中,射线OC在∠AOB的内部.

①若锐角∠BOC=30°,则∠MON= °;

②若锐角∠BOC=n°,则∠MON= °.

(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.

(3)在(2)中,BOC为任意锐角改为BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.
(1)求证:AB=BF;
(2)如果BE=2EC,求证:DG=GE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.

(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______________

(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=4.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.

(1)篮球和排球单价各是多少元?

(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?

(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:

1)如图,在平面内有不共线的3个点ABC.

a)作直线AB,射线AC,线段BC

b)延长BC到点D,使CD=BC,连接AD

c)作线段AB的中点E,连接CE

d)测量线段CEAD的长度,直接写出二者之间的数量关系_______.

(2) 5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.

注意只需添加一个符合要求的正方形,并用阴影表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

问题:如图1,在平行四边形ABCD中,EAD上一点,AE=AB,EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=EAB,连接AG.

求证:EG =AG+BG.

小明同学的思路是:作∠GAH=EABGE于点H,构造全等三角形,经过推理解决问题.

参考小明同学的思路,探究并解决下列问题:

(1)完成上面问题中的证明;

(2)如果将原问题中的EAB=60°”改为EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案