精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点A(﹣10),B3,﹣1),点Py轴上一点,若△ABP的面积为3,则满足条件的点P坐标为_____

【答案】0)或(0).

【解析】

如图,待定系数法求得直线AB的解析式为:y=﹣x,得到直线ABy轴的交点坐标为:C0,﹣),设P0m),根据三角形的面积公式列方程即可得到结论.

解:如图,设直线AB的解析式为:y=kx+bk0

A(﹣10),B3,﹣1)代入得

解得

直线AB的解析式为:y=﹣x

x0时,y=﹣

直线ABy轴的交点坐标为:C0,﹣),

P0m),

×1×|m|++×3×|m|+)=3

解得:mm=﹣

满足条件的点P坐标为(0)或(0),

故答案为:(0)或(0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐标系中描出各点,画出△ABC

(2)求△ABC的面积;

(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P。

(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;

(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由。(图3只写结论,不写理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.

(1)此时梯子顶端离地面多少米?

(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD,点F为直线AB上一点,G为射线BD上一点.若∠HDG2CDH,∠GBE2EBFHDBE于点E,则∠E的度数为(  )

A.45B.60°C.65°D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为抛物线y=x2上一动点.

(1)若抛物线y=x2是由抛物线y=x+2)2﹣1通过图象平移得到的,请写出平移的过程;

(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点PPMlM

①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.

②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,点Ax轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OBOC=OCOA=2.

(1)求点C的坐标;

(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;

(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将纸片 ABCD 沿 PR 翻折得到三角形 PCR,恰好 CPABCRAD.若∠B=120°,∠D=50°,则 C=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.

(1)求y与x的函数解析式;

(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.

查看答案和解析>>

同步练习册答案