精英家教网 > 初中数学 > 题目详情

【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x6x14,单位:km):

1)写出这辆出租车每次行驶的方向;

2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x表示);

3)这辆出租车一共行驶了多少路程(结果用x表示)?

【答案】1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)向东(7km;(3)(km

【解析】

1)以A为原点,根据数的符号即可判断车的行驶方向;
2)将四次行驶路程(包括方向)相加,根据判断出租车的位置;
3)将四次行驶路程的绝对值相加即可.

1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西;

2

经过连续4次行驶后,这辆出租车所在的位置是向东(7km

3):

答:这辆出租车一共行驶了(km的路程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面45米(即NC=45米)当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
19

【题目】某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

测试项目

测试成绩/分

笔试

75

80

90

面试

93

70

68

根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分

(1)分别计算三人民主评议的得分;

(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A04)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰RtAPB.设P点的运动时间为t秒.

1)若AB//x轴,求t的值;

2)当t=3时,坐标平面内有一点M(不与A重合),使得以MPB为顶点的三角形和△ABP全等,请求出点M的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),平面直角坐标系中,点AB分别在xy轴上,点B的坐标为(01),∠BAO=30°.

1)求AB的长度;

2)以AB为一边作等边△ABE,作OA的垂直平分线MNAB的垂线AD于点,求证:BD=OE

3)在(2)的条件下,连接DEABF,求证:FDE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线x轴、y轴分别交于AB两点,点Cy轴上一点将坐标平面沿直线AC折叠,使点B刚好落在x负半轴上,则点C的坐标为  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,BEADBFCD,垂足分别为EF

(1)求证:BEBF

(2)当菱形ABCD的对角线AC8BD6时,求BE的长.

查看答案和解析>>

同步练习册答案