精英家教网 > 初中数学 > 题目详情

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
19

【题目】某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

测试项目

测试成绩/分

笔试

75

80

90

面试

93

70

68

根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分

(1)分别计算三人民主评议的得分;

(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?

【答案】(1)甲得分50分,乙得分80分,丙得分70分;(2)乙当选学生会主席.

【解析】试题分析:1)根据题意可以分别求得甲乙丙三人的民主评议得分;
2)根据题意可以分别求得甲乙丙三人的最终成绩,然后比较大小即可解答本题.

试题解析:(1)由题意可得,

甲民主评议的得分是:200×25%=50()

乙民主评议的得分是:200×40%=80()

丙民主评议的得分是:200×35%=70()

(2)由题意可得,

甲的成绩是: ()

乙的成绩是: ()

丙的成绩是: ()

70.4<73.9<77

∴乙当选学生会主席

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小华在某月的日历上圈出相邻的四个数,算出这四个数字的和为,那么这四个数在日历上位置的形式是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学有一块四边形的空地ABCD,如图所示,经测量∠A=90°,AB=6mBC=24mCD=26mDA=8m.

1)求四边形ABCD的面积;

2)学校计划在空地上种植草皮,若每平方米草皮需要200元,问学校需要投入多少资金买草皮

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共人,其中乙单位人数少于人,且甲单位人数不够.经了解,该风景区的门票价格如下表:

数量()

张及以上

单价(/)

如果两单位分别单独购买门票,一共应付.

1)甲、乙两单位各有多少名退休职工准备参加游玩?

2)如果甲单位有名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为_____

【答案】32

【解析】试题分析:抛物线y=﹣x2﹣2x+3x轴交于点AB

y=0时,则﹣x2﹣2x+3=0

解得x=﹣3x=1

AB的坐标分别为(﹣30),(10),

AB的长度为4

C1C3两个部分顶点分别向下作垂线交x轴于EF两点.

根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1C2

如图所示,阴影部分转化为矩形.

根据对称性,可得BE=CF=4÷2=2,则EF=8

利用配方法可得y=﹣x2﹣2x﹣3=﹣x+12+4

则顶点坐标为(﹣14),即阴影部分的高为4

S=8×4=32

考点:抛物线与x轴的交点.

型】填空
束】
17

【题目】解方程:(1)2(3x﹣1)=16;(2);(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.

(1)求该商家第一次购进机器人多少个?

(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前微信支付宝共享单车网购给我们带来了很多便利,初二数学小组在校内对你最认可的四大新生事物进行了调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.

1)根据图中信息求出=___________=_____________

2)请你帮助他们将这两个统计图补全;

3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可微信这一新生事物?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x6x14,单位:km):

1)写出这辆出租车每次行驶的方向;

2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x表示);

3)这辆出租车一共行驶了多少路程(结果用x表示)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:

(1)杨老师采用的调查方式是 (填“普查”或“抽样调查”);

(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?

(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

查看答案和解析>>

同步练习册答案