精英家教网 > 初中数学 > 题目详情

【题目】为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共人,其中乙单位人数少于人,且甲单位人数不够.经了解,该风景区的门票价格如下表:

数量()

张及以上

单价(/)

如果两单位分别单独购买门票,一共应付.

1)甲、乙两单位各有多少名退休职工准备参加游玩?

2)如果甲单位有名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?

【答案】1)甲单位有62人,乙单位有40人;(2)甲乙两单位联合起来选择按40元一次购买101张门票最省钱

【解析】

1)设甲单位有退休职工x人,则乙单位有退休职工(102-x)人,根据如果两单位分别单独购买门票,一共应付5500建立方程求出其解即可;

2)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.

1)设甲单位有退休职工x人,则乙单位有退休职工(102-x)人.

依题意得:50x+60×102-x=5500

解得:x=62

则乙单位人数为:102-x=40

答:甲单位有62人,乙单位有40人;

2)∵甲单位有名退休职工因身体原因不能外出游玩,

∴甲单位外出游玩的人数有62-12=50.

方案一:各自购买门票需50×60+40×60=5400(元);

方案二:联合购买门票需(50+40×50=4500(元);

方案三:联合购买101张门票需101×40=4040(元);

综上所述:因为540045004040

故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x-1|,小荣根据学校函数的经验,对函数y=|x-1|的图象与性质进行了探究。下面是小荣的探究过程,请补充完成

列表:下表是y与的几组对应值,请补充完整。

(2)描点连线:在平面直角坐标系xOy,请描出以上表中各对对应值为坐标的点,画出该函数的图象;

(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合图数的图象,写出该函数的其他性质(一条即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面45米(即NC=45米)当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:点时,甲追上乙;分时,甲追上丙;当乙追上丙时,若从分起计时,丙跑的时间为___________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举办网络安全知识答题竞赛,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.

平均分(分)

中位数(分)

众数(分)

方差(分2

七年级

a

85

b

S七年级2

八年级

85

c

100

160

1)根据图示填空:a   b   c   

2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?

3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,对角线ACBD相交于OEF过点O,连接AFCE

1)求证:△BFO≌△DEO

2)若AFBC,试判断四边形AFCE的形状,并加以证明;

3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
19

【题目】某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

测试项目

测试成绩/分

笔试

75

80

90

面试

93

70

68

根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分

(1)分别计算三人民主评议的得分;

(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A04)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰RtAPB.设P点的运动时间为t秒.

1)若AB//x轴,求t的值;

2)当t=3时,坐标平面内有一点M(不与A重合),使得以MPB为顶点的三角形和△ABP全等,请求出点M的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

同步练习册答案