【题目】如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.
(1)求抛物线的函数表达式;
(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;
(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.
【答案】(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.
【解析】
(1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;
(2)如图1,过点P作轴,交BC于点H,设,H ,求出的面积即可求解;
(3)如图2,作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,2),AC的解析式为y=5x5,E点坐标为,利用两直线垂直的问题可设直线的解析式为,把E代入求出b,得到直线的解析式为 ,则解方程组 得点的坐标;作点关于N点的对称点,利用对称性得到,设,根据中点坐标公式得到,然后求出x即可得到的坐标,从而得到满足条件的点M的坐标.
(1)把代入得
;
(2)过点P作轴,交BC于点H,
设,则点H的坐标为 ,
∴ ,
∴,
∴当时,有最大值,最大值为,此时点坐标为.
(3)作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,
∵,
∴,
∴,
∵△ANB为等腰直角三角形,
∴,
∴N(3,2),
由 可得AC的解析式为y=5x5,E点坐标为,
设直线的解析式为,把E代入得 ,解得,
∴直线的解析式为,
解方程组得 ,则;
如图2,在直线BC上作点关于N点的对称点,则,
设,
∵,
∴,
∴,
综上所述,点M的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,在中,,点是边上的动点(不与重合),点在边上,并且满足.
(1)求证:;
(2)若的长为,请用含的代数式表示的长;
(3)当(2)中的最短时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O为等边△ABC的外接圆,AD∥BC,∠ADC=90°,CD交⊙O于点E.
(1)求证:AD是⊙O的切线;
(2)若DE=2,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意:B级满意;C级:基本满意:D级:不满意),并将调查结果绘制成如两幅不完整的统计图,请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是 ;
(2)图①中,∠α的度数是 ,并把图②条形统计图补充完整;
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的户数约为多少户?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.
请根据上述信息解答下列问题:
(1)本次调查数据的众数落在 组内,中位数落在 组内;
(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,⊙O的半径,弦AB,CD交于点E,C为的中点,过D点的直线交AB延长线与点F,且DF=EF.
(1)如图①,试判断DF与⊙O的位置关系,并说明理由;
(2)如图②,连接AC,若AC∥DF,BE=AE,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为(0,2)、(1,0),顶点C在函数y=x2+bx-1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′之间的距离为 ______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com