精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABC,ACB=90°,DE分别是ABAC的中点,连接CD,EEFDCBC的延长线于F若平行四边形CDEF的周长是25cm,AC的长为5cm,的长是________.

【答案】13cm

【解析】

根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,BC=25-AB,后根据勾股定理即可求得

∵四边形CDEF是平行四边形;

DC=EF,

DCRtABC斜边AB上的中线,

AB=2DC,

∴四边形DCFE的周长=AB+BC,

∵四边形DCFE的周长为25cm,AC的长5cm,

BC=25-AB

∵在RtABC,ACB=90°,

AB=BC+AC,AB=(25-AB) +5,

解得,AB=13cm,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角三角形纸片ABC中,AB3AC4D为斜边BC的中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设Pn1Dn2的中点为Dn1,第n次将纸片折叠,使点A与点Dn1重合,折痕与AD交于点Pnn2),则AP2019的长为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴, 轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.

(1)求抛物线的解析式;

(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;

(3)当△ADE为等腰三角形时,求t的值;

(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y-x-3x轴,y轴分别交于点AC,经过点AC的抛物线yax2+bx3x轴的另一个交点为点B(20),点D是抛物线上一点,过点DDEx轴于点E,连接ADDC.设点D的横坐标为m

(1)求抛物线的解析式;

(2)当点D在第三象限,设△DAC的面积为S,求Sm的函数关系式,并求出S的最大值及此时点D的坐标;

(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的一元二次方程,给出下列说法:①若,则方程必有两个实数根;②若,则方程必有两个实数根;③若,则方程有两个不相等的实数根;④若,则方程一定没有实数根.其中说法正确的序号是( )

A. ①②③B. ①②④

C. ①③④D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知抛物线y=ax2+bx3a(a>0)x轴交于A(1,0)B两点,与y轴交于点C.

(1)求点B的坐标;

(2)P是第四象限内抛物线上的一个动点.

①若∠APB=90°,且a<3,求点P纵坐标的取值范围;

②直线PAPB分别交y轴于点MN求证:为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,PCD边上一点(DP<CP),APB=90°.将ADP沿AP翻折得到AD′P,PD′的延长线交边AB于点M,过点BBNMPDC于点N.

(1)求证:AD2=DPPC;

(2)请判断四边形PMBN的形状,并说明理由;

(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PB为⊙O的切线,B为切点,过BOP的垂线BA,垂足为C,交⊙O于点A,连接PAAO,并延长AO交⊙O于点E,与PB的延长线交于点D

1)求证:PA是⊙O的切线;(2)若AC6OC4,求PA的长.

查看答案和解析>>

同步练习册答案